
Whitepaper

API access
management

Explore the modern
API security landscape.

Whitepaper API access management 1

2 API security from concepts to components

2 How have IT and software development changed?

3 API security goals and approaches

8 Summary

Contents

Whitepaper API access management 2

This whitepaper describes the modern API security landscape and how

to effectively leverage OAuth 2.0 and API gateways for authentication

and authorization from both an infrastructure and software development

mindset. To date, most organizations have had hard boundaries between

system administrators and their software development teams, where

they occasionally interact, rarely coordinate, and never collaborate. While

this concept has worked for decades, the assumptions, constraints, and

requirements of software development have quickly changed as employees

bring their own devices, partners connect in new and deeper ways, and

customers expect smooth, consistent user experiences across every

device. As the needs for collaboration between IT administrators and

software developers — both internal and external — continue to grow, we

need to reconsider the boundaries of our systems, expectations of users,

and the security policies that protect both.

At a practical level, IT departments are considered a cost center with the

sole responsibility of “keeping the lights on” while application development

teams drive new revenue, customer retention, and growth. Information

security teams have responsibilities in both areas. At the same time, the IT

department is charged with writing and enforcing the security policies that

the development teams must implement.

Unfortunately, most software development teams are encouraged to “move

fast and break things” while the IT department and the organization’s

customers suffer the consequences of data breaches for months and

years to come. Even worse, as information security teams have tried to

assert their rightful role in protecting the organization, they are treated as

obstacles to be avoided and worked around.

API security
from concepts
to components

How have IT
and software
development
changed?

Whitepaper API access management 3

Two groups — Always at odds

In terms of APIs specifically, whether it’s a backend system, partner-facing

website, or customer-facing mobile application, development teams are

sharing more data, in more ways, to more users than ever before. Even

though most companies attempt to find a “balance” between the two

groups, they’re often unsuccessful. Instead, IT departments should choose

technologies, tools, and patterns that enable developers to build secure,

reliable systems.

API security
goals and
approaches

IT & Administrators

Kiran (me)
Integration Architect

Many APIs

Mike
Dev Ops Manager

Authorization API
POST / Authorize

Okta
MuleSo� API

Gateway Kim (me)
Identity Architect

RSA MFA
Active

Directory
Anypoint
Platform

Many Clients

Developers

Kiran
Integration Architect

Maps API
GET / Location?

city=(city)

OktaMuleSo� API GatewayMike
Dev Ops Manager

API / Maps?
customer=(cid)

Customer ESB API
GET / Account / (id)

MuleSo� ESB
Custom Maps

Service

Kim
Identity Architect

Many Clients

Google Maps API
POST / maps /

(city)

Randy (me)
Backend Developer

Whitepaper API access management 4

As companies move to secure their APIs, their goals are the same as

securing any other system or software. Fundamentally, it comes down to

verifying the right people and systems (authentication), determining access

to the right things (authorization), and ensuring least privilege — all in the

shortest time possible. If a company fails to do any of these three things,

its systems will be frustrating, unreliable, catastrophically insecure, or all

three. Thankfully, we have API tools that enhance both security and the

user experience.

Approach #1: No security

While this isn’t a serious approach to security, it is the most common by far.

As developers build mobile apps, they believe if the API is hidden within the

application then it doesn’t require the same care and security that a publicly

available API requires. Unfortunately, that’s 100% wrong. If an API is online, it

is susceptible to abuse. Being “public” or “private” is a false hope because

the vast majority of data breaches occur from insiders and today’s trusted

partner may be tomorrow’s compromised system.

Approach #2: API keys

Most API access starts with API keys. The required logic is implemented by

most frameworks out of the box so they’re fast and easy to implement but

not sufficiently secure. API keys are created by the developer and inherit

their permissions. At first glance, this makes sense but it does not take into

account the end user’s permissions and what they need to accomplish.

Therefore, an API key may allow read/write access, even when the use case

only needs read access. Furthermore, since the keys are at the account

level, generally there is only one per account so all applications share the

same over-permissioned key.

Finally, since most APIs only support a single key per account, developers

often reuse keys between applications which makes automatic expiration

impossible and rotation challenging. If a key is compromised, a developer

leaves the team, or a simple copy and paste error occurs in the wrong

place, then the owners of all impacted applications have to coordinate a

simultaneous update to minimize downtime.

API keys address authentication but rarely address authorization or

least privilege.

Whitepaper API access management 5

Approach #3: OAuth 2.0

OAuth 2.0 serves as a more advanced approach to granting and protecting

API access. In the simplest implementation, an OAuth 2.0 token looks and

acts quite a bit like an API key but with two distinctions:

1. A token inherently includes the concept of ‘scoping’ to enable API

designers to grant fine-grained permissions to applications. For

example, a simple logging application could have a token for read-only

access while a different application would have a different token with

different access.

2. A token is designed to expire and therefore has a refresh process built

into the specification.

As a result of these two aspects, if a token is compromised, OAuth 2.0

provides three benefits over API keys:

1. The token will be scoped to the use case the end user allows, not

necessarily to the user’s entire permissions or the developer’s access.

As a result, the token may be useless for attacking other parts of the

system.

2. The token automatically expires so the timeframe for an attacker to

execute an attack is limited.

3. Tokens can be revoked with a simple API call, blocking access

immediately.

Regardless, while OAuth 2.0 is a much better solution, it is still not

a complete solution for securing APIs because while it addresses

authentication, authorization, and least privilege, these are only the policy

decisions. We still need to enforce these policies to protect the API.

While building this enforcement into the API seems like the best answer,

we quickly enter into a world where we can’t audit or even review the

enforcement without sharing code. As enforcement and those policies

change over time, we may have to redeploy pieces of the API. Alternatively,

what if we can enforce those policies before the API?

Whitepaper API access management 6

Approach #4: API gateways

No matter what, malicious users and compromised applications will

attempt to misuse and abuse your API. To protect an API’s infrastructure

and to provide a single policy enforcement point, one of the greatest tools

available is an API gateway. From an enterprise architect’s perspective,

a gateway can serve as an organization-wide design and orchestration

tool to connect any API to all other APIs. From a developer’s perspective,

a gateway can serve microservice-specific systems and be included

directly in a continuous integration system for seamless deployment.

From both perspectives, a gateway serves as a single point of control and

enforcement for policies, logging, and auditing. Regardless of the vendor

or project, all gateways serve as an API “firewall” to protect APIs from

malicious data, incorrect requests, and denial of service attacks.

In general, API gateways include simple API key creation and management.

A select few go further and offer embedded OAuth 2.0 Authorization

Servers using simple user profiles. This creates a powerful combination

where developers can both protect their APIs with API gateways and

implement fine-grained access control for their users. Where this falls short

is that it creates yet another place to store, maintain, and authenticate

users. You can synchronize user profile fields but as the user’s information,

behavior, and potentially subscription change, building authorization policies

based on those aspects becomes important.

As we get deeper into scaling our APIs from internal developers to partners

to customers, a gateway by itself remains an important piece but not a

complete solution. If we consider industry-specific specifications and

practices such as Open Banking in finance, SMART on FHIR for healthcare,

insurance, energy, and other highly regulated industries, we need to include

OAuth and its related specifications again.

Whitepaper API access management 7

Approach #5: API gateway and API access management

The complete and flexible yet specification-compliant solution is not

OAuth alone or an API gateway alone but a combination of the two. At a

practical level, we have to realize that our users are not simply “trusted”

or “suspicious” but we must consider what they are trying to accomplish.

For example, when you use an HR system’s API to download your vacation

history, the risks and consequences are minor. Using that same API to

change your direct deposit information is risky if not potentially catastrophic

and therefore should require tighter restrictions with elevated permissions.

This is where an API gateway combined with API access management

creates a powerful solution.

Okta’s API Access Management is built on Okta’s Universal Directory

which allows sign on and authorization policies that limit particular OAuth

2.0 scopes to specific devices, networks, and even group membership.

Furthermore, specific scopes can require user consent to ensure the user

explicitly authorized access to the application. Most importantly, a security

team can manage those policies outside the API gateway while centrally

logging access requests, grants, and policy changes. For additional

compliance needs, access information can also be viewed via the Okta

UI or exported to a 3rd-party system (such as SIEM/ticketing systems). By

shifting the IT department from blockers to enabling developers with simple

integrations using well-established standards and tools, it shifts APIs out of

the realm of “shadow IT” and back to trusted, known systems.

Authentication Flow with an API Gateway

API Gateway

Identity Provider (IdP) Resource Server (RS)

End user

3

4

1

2

End User makes request to API

Application/API redirects to Okta

End User authenticates with Okta

Okta returns an Access Token
based on the user’s context and
action desired

1.

2.

3.

4.

Whitepaper API access management 8

An API gateway combined with API access management ensures that the

right people have access to the right resources to accomplish their tasks in

the shortest time possible.

According to Gartner, APIs are one of the most common attack vectors, so

organizations must take action to protect their systems.

API keys are only a starting point. An API Gateway and OAuth 2.0 with a

centralized point of control, closely monitored policies, and context-aware

access management is the best solution of all. Today’s trusted partner may

be tomorrow’s compromised system letting attackers mimic legitimate

users. Organizations need the flexibility to adjust, respond, and protect their

systems based on the full context of the user and their goals.

Discover how you can unify API access and management with Okta.

About Okta

Okta is the World’s Identity Company. As the leading independent Identity partner, we free everyone to safely use any technology—

anywhere, on any device or app. The most trusted brands trust Okta to enable secure access, authentication, and automation. With

flexibility and neutrality at the core of our Okta Workforce Identity and Customer Identity Clouds, business leaders and developers

can focus on innovation and accelerate digital transformation, thanks to customizable solutions and more than 7,000 pre-built

integrations. We’re building a world where Identity belongs to you. Learn more at okta.com.

Summary

https://www.okta.com/api-gateway/
http://okta.com

