
Whitepaper

Write an great
title here up to
three lines

Write a subtitle up to
three lines here lorem
ipsum dolor est

Whitepaper

How passkeys work
and the supported user
journeys for consumer use

A technical
primer on
passkeys

Whitepaper A technical primer on passkeys 1

Contents 2 Introduction

4 How do passkeys work?

20 How do I implement passkeys into my app?

Whitepaper A technical primer on passkeys 2

In May of 2022, Apple, Google, and Microsoft jointly announced their

support for a passwordless future in collaboration with the FIDO Alliance.

At the center of this initiative were passkeys, an evolution of FIDO2

authentication that enables faster, easier, and more secure sign-up and

sign-in experiences for consumers. Based on the Web Authentication

specification (WebAuthn API) and Client to Authenticator Protocol (CTAP),

passkeys give businesses a phishing-resistant alternative to passwords

that also improve the user experience.

The joint support for passkeys was a critical inflection point in the fight

against passwords for two main reasons:

 • It sends a strong signal to the broader security industry—and the

world—how urgent and pervasive the problem of password-only

authentication is

 • As the three main consumer technology ecosystems, consensus on a

standardized approach to solving the problem provides an avenue for

widespread adoption and the elimination of passwords

Introduction

Passwords are insecure and inconvenient

Every year, new data is released that confirms what we already

know: passwords are a weak link in the security chain that also ruins

the user experience.

 • 43% of consumers will abandon a purchase or account creation

flow due to password policies

 • 36% of all data breaches involved an element of phishing

https://fidoalliance.org/apple-google-and-microsoft-commit-to-expanded-support-for-fido-standard-to-accelerate-availability-of-passwordless-sign-ins/
https://www.okta.com/customer-identity-trends-report/
https://www.okta.com/customer-identity-trends-report/
https://www.verizon.com/business/resources/reports/dbir/

Whitepaper A technical primer on passkeys 3

As a brief primer, passkeys are FIDO credentials that are discoverable

by browsers or housed within native applications or security keys for

passwordless authentication. They come in two forms:

 • Synced passkeys, which are synced between a user’s devices via

a cloud service like an operating system (OS ecosystem or password

manager)

 • Device-bound passkeys, which never leave a single device; these

can be used on FIDO Certified authenticators and security keys

For a deeper dive on what passkeys are and their importance in the fight

against password-based attacks, check out our Passkeys Primer.

This document aims to explain how passkeys work from a technical point

of view, illustrate the standard authentication flows they support, and briefly

touch on implementation considerations for developers.

https://www.okta.com/resources/whitepaper-passkeys-primer/thankyou/

Whitepaper A technical primer on passkeys 4

As explained by the FIDO Alliance, the underlying FIDO protocols

employ standard public key cryptography techniques to provide strong

authentication. To register with an online service, the user’s device creates

a new cryptographic key pair consisting of:

 • A public key, which is registered with the online service

 • A private key, which is retained as a true secret

Importantly, the keys are generated securely and uniquely for every

account — you don’t have to worry about users picking a weak private

key, and private keys aren’t reused across multiple services.

To authenticate with a particular service, the client device proves

possession of the account’s corresponding private key by signing a

challenge provided by the service — the service itself never sees the private

key and, by extension, never needs to store or protect this information.

Crucially, the private key can only be used after it is unlocked by the user,

with the local unlock typically achieved either by inserting a second-factor

device or via the primary device’s unlock mechanism — usually a biometric

authentication, device PIN, or a pattern.

What makes passkeys different from earlier FIDO2 implementations is

that they:

 • Allow users to use passkeys on any device in a particular ecosystem

where passkeys are backed up to the device and cloud

 • Allow users to perform cross-device authentication to easily cross

ecosystem boundaries without facing the friction of enrolling FIDO

credentials on new devices

Supplementary information on passkeys can be found on the FIDO

Alliance’s website.

How do
passkeys
work?

https://fidoalliance.org/how-fido-works/
https://fidoalliance.org/how-fido-works/
https://fidoalliance.org/how-fido-works/

Whitepaper A technical primer on passkeys 5

Before highlighting the most common flows and user actions relating

to passkeys, it’s crucial to note the four key entities involved in the

authentication ceremony:

 • User: The user of an application who interacts with the authenticator

to authorize operations, e.g. a customer trying to access your

application or service

 • Client App/User-Agent: This is usually a web browser responsible

for the client-side communication

 • Relying Party: The entity that makes use of the passkey to authenticate

a user, e.g. an identity service provider such as Auth0 by Okta

 • Authenticator: Either a hardware or software device that receives

requests from the client to either perform an attestation operation

or an assertion operation. It generates public key credentials and

associates them with a single user and relying party

Auth0

Browser / Agent

Passkey from
Nearby Device

Hybrid

CTAP

CTAP / proprietarySynced passkey
WebAuthn API

Google, Apple,
Microso�

Relying Party
Roaming

Authenticator

Platform
Authenticator

Client app

Whitepaper A technical primer on passkeys 6

Enrolling a passkey

For new users accessing an application, passkeys can be used as a

first factor for passwordless account creation. For returning users who

previously signed up using traditional forms of authentication (e.g. a

username and password), a passkey can be created for subsequent login.

In both scenarios, users must go through an enrollment process to use a

passkey for a given application.

In this flow, the authenticator creates a new set of public-key credentials

that can be used to sign a challenge generated by the relying party. The

public part of these new credentials and the signed challenge can be sent

back to the relying party for storage. The relying party can later use these

credentials to verify the identity of a user whenever required.

The complete flow, based on the WebAuthn specification, can be seen in

the diagram below.

User User Agent Relying Party Authenticator

Goes to relying party’s website
HTTP GET

HTTP

Get challenge

Challenge

Challenge + create new credentials command

Authorization request (optional)

Authorized

Credentials (public key) + signed challenge

Registered

Registered

New credentials + signed challenge

Click register bu�on

Relying party’s script running
on the user agent calls
navigator.credentials.create
with this data

Whitepaper A technical primer on passkeys 7

To help illustrate passkey enrollment, we'll take a practical example of a

new user trying to access an application on their Personal Computer via

a browser where Auth0 is the Relying Party.

Step 1

The user goes through

the registration process

on www.atko.com, supported by

the relying party. Upon entering

their email address, they are

prompted to create a passkey.

Step 2

The relying party generates

a challenge and sends it along

with the user handle (non-PII

data) and domain name (Relying

Party ID) back to the user agent,

in this case, the browser.

Whitepaper A technical primer on passkeys 8

Step 3

The user agent sends the data

to the authenticator, which

prompts the user to create

a passkey for the specific

domain name and user handle.

It’s important to note that the

platform ecosystem dictates the

user experience at this stage.

Step 4

The user chooses to create a

passkey using their device,

at this point, the authenticator

prompts the user for verification

using the device unlock

mechanism, such as biometrics.

Step 5

The authenticator generates

a new public/private key pair

credential tied to the domain

name and user handle.

Whitepaper A technical primer on passkeys 9

Step 6

The authenticator stores

the private key and returns

the public key credential

and the signed challenge

to the user agent.

Step 7

On supported ecosystems,

the Operating System generates

a backup of the private key on

their cloud vault (iCloud keychain

/ Google Password Manager).

Step 8

The user agent forwards

the public key credential

and the signed challenge to

the relying party to register

the user. The relying party

validates the credential to ensure

the challenge value matches.

Whitepaper A technical primer on passkeys 10

Step 9

The relying party stores the

credential (public key, user

handle), issues a token and

redirects the user to the

application.

In the example above, step seven is a crucial difference and benefit of

passkeys for consumer use. Unlike previous implementations of FIDO

authentication, passkeys can be backed up to the cloud, enabling them

to sync across multiple devices within the same ecosystem, promoting

easier adoption.

However, some criticism of synced passkeys has focused on the shift

from browser-based synchronization to OS-based synchronization. This

direction was a deliberate decision by the FIDO Alliance, based on the

conclusion that operating systems provide a more secure means of making

passkeys available to multiple devices than using browsers to do so.

Additionally, synced passkeys provide far more phishing resistance than

traditional forms of authentication like passwords.

Implications for signup and login

Passkeys are phishing-resistant because they are associated

with a particular domain name. When deploying your applications,

make sure that the domain name used in the registration and

authentication flow remains constant to ensure users retain access

to their passkeys.

Whitepaper A technical primer on passkeys 11

Signing in with a passkey

Now that the passkey has been enrolled, users can use their passkey to

sign in to applications in a seamless and secure manner. Upon login, a

digital challenge is issued from the applications server to the user, which

can only be solved by proving possession of the corresponding private

key from the enrollment phase. A digital signature is generated based on

the private key provided by the authenticator and relying party. The private

key is kept secret, and only the authenticator needs to know it.

The public key, in contrast, can be seen or stored by anyone. The public

key can be used to verify signatures generated by the private key. No other

key, besides the private key, can generate a signature that the public key,

stored in the relying party, can verify as valid and prove the user identity.

User User Agent Relying Party Authenticator

Goes to relying party’s website
HTTP GET

HTTP

Get challenge

Challenge

Challenge + get credentials command + requested credential id (optional)

Authorization request (optional)

Authorized

Signed challenge

Logged in

Logged in

Signed challenge

Click register bu�on

Relying party’s script running
on the user agent calls
navigator.credentials.get
with this data

We’ll continue our example from the enrollment section to show the

mechanics of signing in with a passkey below.

Whitepaper A technical primer on passkeys 12

Step 1

The user goes to the relying

party's website to start the

login process.

Step 2

Upon clicking the login button,

the relying party generates a

challenge and sends it back

to the user agent. Optionally,

additional information can be

provided by the relying party, for

example, how the authentication

should happen or if a specific

credential should be used.

Step 3

The user agent sends the data

to the authenticator, which

prompts the user to use a

passkey to authenticate. A list

of passkeys available for the

domain name is displayed.

Whitepaper A technical primer on passkeys 13

Step 4

The user selects the passkey,

and the authenticator prompts

the user for verification with

the registered biometric, PIN

or pattern. The user authorizes

the operation by unlocking the

authenticator.

Step 5

The authenticator generates

a signature and signs the

challenge with the private key

based on the domain name.

Step 6

The authenticator returns

the signed challenge to the

user agent.

Whitepaper A technical primer on passkeys 14

Step 7

The user agent forwards the

signed challenge to the relying

party to authenticate the user.

Step 8

The relying party validates

the signature with the public

key associated with the user

account.

Step 9

If the signature is valid,

the relying party authenticates

the user, issues a token,

and redirects the user to

the application.

Whitepaper A technical primer on passkeys 15

Performing cross-device authentication

Synced passkeys allow users to have a passwordless experience across

all their devices in the same ecosystem. However, for users with devices

in different ecosystems (e.g. an Apple Macbook and a Google Pixel

phone), the FIDO implementation supports end-users to continue their

passwordless journey via cross-device authentication.

Cross-device authentication involves scanning a QR code from a device

without a passkey, with a device that has a passkey. The protocol

leverages Bluetooth technology to verify the physical proximity of the two

devices, which is implemented by hybrid transport based on the Client to

Authenticator Protocol (CTAP) 2.2 specification. The hybrid transport

is intended to connect authenticators with cameras, typically phones,

to a client platform which originated the authentication request. This

transport involves network communication via a tunnel service, and

(Bluetooth Low Energy) transmissions to ensure proximity between the

devices, and is implemented by the authenticator and the client platform,

not the relying party.

Some criticism of cross-device authentication calls out the security risk

associated with using a visible QR code. A bad actor in close proximity may

be able to use the QR code for account takeover. Though this is a concern,

it drastically reduces the attack surface to someone in close proximity, as

opposed to passwords which can be used to compromise an account from

anywhere in the world. Additionally, the QR code used for cross-device

authentication can only be used once and expires quickly when not used.

We’ll continue our examples from previous sections to help illustrate the

mechanics of cross-device authentication. In this scenario, the first device

(the laptop) is running on an OS that does not yet have a passkey for the

web app, and the second device (mobile phone) is running an OS that

already has a passkey for the web app.

Whitepaper A technical primer on passkeys 16

Hybrid

Browser / Agent

Passkey from
Nearby Device

WebAuthn API

Relying Party

Client app

BLE

secure
tunnel

connection

Auth0

Step 1

The user opens a web

application using Device 1

and is offered the option to

authenticate using a passkey

from nearby devices.

Whitepaper A technical primer on passkeys 17

Step 2

The user selects that option,

and the web page displays a

QR code.

Step 3

The user points Device 2’s

camera to the QR to initiate

an authentication ceremony.

Step 4

To prevent attacks, this transport

requires proof of proximity

where the notification of the

connection attempt comes in

the form of a BLE (Bluetooth Low

Energy) advertisement.

Whitepaper A technical primer on passkeys 18

Step 5

A WebSocket tunnel is

established between the two

devices, and a cryptographic

handshake establishes a secure,

authenticated connection.

Step 6

Device 2 performs the passkey

authentication ceremony, and

upon completion, the user is

signed into the web application

on the first device.

At this point, it is a recommended practice for the app to ask the user

whether or not they want to create a new passkey on the first device. If the

user chooses to do so, they will now have a passkey for that app available

across that device's OS ecosystem.

For example, if the first device is an Apple MacBook and the second device

is a Google Pixel phone, then at the start of the flow, the user only had a

passkey for the web app on Google devices — but at the end of the flow,

the user has both the passkey within the Google ecosystem and a new

passkey for the same web app within the Apple ecosystem.

Whitepaper A technical primer on passkeys 19

Recovering passkeys

Recall that in the case of device-bound passkeys, the private key is

restricted to the authenticator. While this creates a secure authentication

solution, it poses challenges for users and organizations regarding

the backup of the key data, loss of the authenticator, and adding new

authenticators for the user.

The FIDO Alliance recommends a two-step strategy for managing account

recovery in this situation:

1. To reduce the number of account recoveries, use multiple

authenticators per account

2. To execute account recovery, re-run identity proofing / user onboarding

mechanisms

These steps are detailed in Recommended Account Recovery Practices

for FIDO Relying Parties.

Synced passkeys, once configured, are available across all devices synced

with the passkey provider, and the user doesn’t need to enroll multiple

FIDO credentials with a relying party to ensure continued access in the

event of a lost authenticator.

For example, a user who loses the originating device can log into the OS

ecosystem or the password manager on another device (even a new one)

to recover access to their passkeys.

However, the fact that synced passkeys roam within one vendor's set of

synced devices (or within a password manager service), and access to

them is gated to the corresponding account, means that access to the

passkey collection is as secure as access to the account on which the

roaming features hinge.

For consumer applications, this may be an attractive feature of synced

passkeys, as the major operating system vendors have invested

considerable expertise in safeguarding access to the underlying accounts.

However, many administrators might not be comfortable with this

arrangement, and time — and evolving passkey implementations — will

reveal the degree to which syncing impacts passkey adoption in different

industries and scenarios.

https://fidoalliance.org/recommended-account-recovery-practices/
https://fidoalliance.org/recommended-account-recovery-practices/

Whitepaper A technical primer on passkeys 20

Broadly speaking, developers have two approaches when it comes to

extending authentication to support passkeys:

 • Implementing passkeys yourself, via APIs and SDKs

 • Leveraging an Identity service provider

The DIY approach

From the implementation perspective, synced passkeys look just like

platform authenticators that do not provide an attestation statement.

That means that from the protocol perspective, if your web app already

supports WebAuthn, and as long as it doesn’t require an attestation

response, you technically already support synced passkeys. From the

user experience perspective, however, that might not be entirely true.

For example:

 • The prompts and language you have in your current enrollment pages

likely refer to device-bound credentials (e.g., "Sign in faster from this

device"), which is no longer the whole truth with synced passkeys.

 • Chances are that you are using platform authenticators to enable

second authentication factors only, given that before synced passkeys,

you were directly responsible for account recovery.

None of the changes above are particularly hard, especially if you already

implemented WebAuthn, but you do need to do a bit of work to offer a

good experience.

To help developers, in October 2022 the W3C WebAuthn Community

Adoption Group and the FIDO Alliance launched passkeys.dev — an online

resource that (among other things) contains documentation and tracks

device support.

How do I
implement
passkeys into
my app?

More information about deploying passkeys

FIDO Alliance has published a series of white papers for IT

administrators, enterprise security architects, and executives

considering deploying FIDO authentication across their organization.

https://www.w3.org/community/webauthn-adoption/
https://www.w3.org/community/webauthn-adoption/
https://passkeys.dev/
https://fidoalliance.org/fido-in-the-enterprise/

Whitepaper A technical primer on passkeys 21

Passkeys with Andrew Shikiar and Tim Cappalli

Shortly after synced passkeys were announced (as multi-device

credentials), Andrew Shikiar (Executive Director & CMO, FIDO

Alliance) and Tim Cappalli (Digital Identity Standards Architect

at Microsoft) joined host Vittorio Bertocci, (Principal Architect at

Auth0) on the Identity Unlocked podcast.

Tune in to learn about the evolution of FIDO credentials and

to gain more develop-focused insights into how multi-device

credentials work.

Using an Identity service provider

Identity is difficult — even seasoned professionals find creating effective

and efficient implementations to be challenging. Plus, customer

expectations are always increasing, with every user comparing each

experience to the best ones they’ve encountered, placing businesses

under considerable pressure to continually evolve the UX they deliver.

However, Identity needs must be satisfied without drawing heavily

upon precious engineering resources that are needed to extend core

competencies — and both of these goals must be satisfied without

overlooking regulatory requirements or compromising on security.

For these reasons, many organizations find it both more efficient and

cost-effective to integrate an Identity service into their applications and

technology stack. Plus, partnering with an identity service provider helps

businesses cater to a broader set of requirements in Customer Identity

and Access Management (CIAM) including:

 • Authentication

 • Authorization

 • User Management

https://identityunlocked.auth0.com/public/49/Identity%2C-Unlocked.--bed7fada
https://identityunlocked.auth0.com/public/49/Identity%2C-Unlocked.--bed7fada/23fe1152

Whitepaper A technical primer on passkeys 22

It’s a certainty that established Identity providers will support passkeys,

providing a convenient option for application developers to extend

their authentication options and keep pace with a rapidly evolving

authentication landscape.

For example, if you already have an app configured to use Auth0 for

authentication, you'll be able to flip that switch and enable passkey

authentication without touching your code at all.

However, different Identity providers offer different features, so due

diligence is strongly recommended. Here are a few things to look for

as you make your short list:

 Independent and neutral → Your CIAM solution should enable you,

 not restrict you. That means it should integrate with your existing

 solutions, should leverage open standards to avoid vendor lock-in,

 and should work with your preferred cloud provider.

 Comprehensive and customizable → Every customer is unique with

 complex needs. Your CIAM solution should help you build seamless,

 consistent, and trustworthy experiences for every type of user.

 Easy to build with, maintain, and use → For virtually every piece of

 technology, engineering teams aim to reduce effort and time that it

 takes to deploy, configure, and operate it — and your CIAM solution

 should support this mission.

 Trusted → Failing to meet compliance requirements, or experiencing

 an unavailable or degraded service can result in significant brand,

 legal, and financial consequences. Your CIAM solution should cause

 you to worry less about these risks.

Whitepaper A technical primer on passkeys 23

Don’t wait for perfect when better is already here

Passwords need to disappear, or at least become much less common,

and everyone within the Identity industry should work to find ways to

leverage the benefits of passkeys while minimizing the drawbacks.

We at Okta are committed to doing our part, both by providing timely,

state-of-the-art, developer-friendly features enabling passkeys — and

by actively participating in the industry discussions shaping the future

of this technology.

Embracing passwordless will get easier as platform vendors and device

manufacturers align on standardized flows for recovery, issuance, and

non-proliferation. For those who want to introduce or extend passwordless

authentication, we recommend looking for authenticators that support:

 Frictionless authentication

 Fewer sign-in errors

 Easy user enrollment

 Resistance to phishing attempts

For what it’s worth, passkeys check all these boxes.

About Okta

Okta is the World’s Identity Company. As the leading independent Identity partner, we free everyone to safely use any technology —

anywhere, on any device or app. The most trusted brands trust Okta to enable secure access, authentication, and automation. With

flexibility and neutrality at the core of our Okta Workforce Identity and Customer Identity Clouds, business leaders and developers

can focus on innovation and accelerate digital transformation, thanks to customizable solutions and more than 7,000 pre-built

integrations. We’re building a world where Identity belongs to you. Learn more at okta.com.

These materials and any recommendations within are not legal, privacy, security, compliance, or business advice. These materials are

intended for general informational purposes only and may not reflect the most current security, privacy, and legal developments nor all

relevant issues. You are responsible for obtaining legal, security, privacy, compliance, or business advice from your own lawyer or other

professional advisor and should not rely on the recommendations herein. Okta is not liable to you for any loss or damages that may result

from your implementation of any recommendations in these materials. Okta makes no representations, warranties, or other assurances

regarding the content of these materials. Information regarding Okta's contractual assurances to its customers can be found at okta.com/

agreements. Any products, features or functionality referenced in this material that are not currently generally available may not be delivered

on time or at all. Product roadmaps do not represent a commitment, obligation or promise to deliver any product, feature or functionality,

and you should not rely on them to make your purchase decisions.

http://okta.com
http://okta.com/agreements
http://okta.com/agreements

