
Whitepaper

Fine-Grained
Authorization (FGA):
A technical primer
Context, concepts, and how to
get started with implementing the
precise and flexible access control
today’s SaaS apps require

Whitepaper Fine-Grained Authorization (FGA): A technical primer 2

3	 Introduction

4	 An overview of access control requirements

9	 Comparing different approaches to authorization

and access control

15	 Key Auth0 FGA concepts and terminology

16	 Auth0 FGA Modeling Language

17	 Getting started with Auth0 FGA

26	 Conclusion

27	 Okta can help

Table of
contents

Whitepaper Fine-Grained Authorization (FGA): A technical primer 3

In the broader domain of Identity and Access Management (IAM),

access controls determine what a user is authorized to do when

interacting with a system.

Many access control methods exist today, ranging from the coarse-

grained role-based access control (RBAC) — in which permissions

are associated with roles, to which users are assigned — and fine-

grained options including attribute-based access control (ABAC) and

relationship-based access control (ReBAC).

In the former (i.e., ABAC), access is granted based on a set of attributes

and policies (e.g., user location, time, privileges); in the latter (i.e., ReBAC),

access is determined by the relationship between objects and resources

(e.g., a user can view a document because someone shared that

document with that user or the user is the owner of the folder within which

the document resides).

In practice, ReBAC enables the implementation of the extremely

fine-grained authorization policies — hence the term fine-grained

authorization (FGA) — that today’s highly collaborative software-as-a-

service (SaaS) apps demand.

Introduction

About this technical primer

The primary aim of this document is to provide introductory

technical content to help you understand what FGA is and how you

can implement this type of authorization in your applications.

To those ends, we begin by briefly examining how access control

requirements have evolved — particularly in recent years as digital

transformation, SaaS adoption, and expectations for collaboration

have imposed new security, compliance, and usability needs.

With that context established, we next summarize different

approaches to authorization and access control, before focusing

on FGA.

From there, we compare two different FGA solutions —

Auth0 FGA and OpenFGA — and show how they are related

to Google’s Zanzibar.

The remainder of the

document explores

Auth0 FGA, including:

1.	 Key concepts and

terminology

2.	 Auth0 FGA

configuration language

3.	 A three-part guide to getting

started with Auth0 FGA

https://auth0.com/fine-grained-authorization
https://openfga.dev/
https://research.google/pubs/pub48190/

Whitepaper Fine-Grained Authorization (FGA): A technical primer 4

An overview of
access control
requirements

As the world continues to move to a more digital, collaborative ecosystem

of applications with ever-increasing data, carefully controlling user access is

critical. Accordingly, access controls have evolved to provide more precision

and greater flexibility.

Access controls contribute to a strong security posture

An effective access control solution greatly simplifies implementing and

maintaining Identity-related controls, which are essential for building and

maintaining a strong security posture.

When authorization is done improperly, people — or, more generally, entities

— may find themselves without access to essential resources or worse,

from a security perspective, unauthorized access.

Least-privilege access is the practice of limiting each user’s access — and

their granular rights such as read, write, execute, share, comment, etc. — to

only those applications, resources, and other assets needed to perform a

specific activity.

This is a security best practice designed to mitigate risks associated with

application access in an increasingly complex technology landscape

that encompasses remote work, cloud services, and more.

In general, the more ‘coarse’ an access control, the more impractical it is

to precisely manage user access and the more overhang (i.e., unnecessary

access) exists throughout the environment.

Broken authorization occupies three of the top five places on

the OWASP (Open Web Application Security Project) API

Security Risks 2023:

1.	 Broken Object Level Authorization

2.	Broken Object Property Level Authorization

3.	Broken Function Level Authorization

https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0xa1-broken-object-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa3-broken-object-property-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa5-broken-function-level-authorization/

Whitepaper Fine-Grained Authorization (FGA): A technical primer 5

61%
of organizations now

have a defined Zero Trust

security initiative in place

35%
of organizations plan to

implement one within

the next 18 months

91%
of survey respondents said

that Identity is important to

their Zero Trust strategy

Zero Trust calls for tighter controls

Identity and Access Management is an important element of any security

strategy, and Zero Trust is no exception.

In fact, “Identity” is the first of five key pillars within the Zero Trust

Maturity Model (ZTMM) developed by the Cybersecurity and

Infrastructure Security Agency (CISA) to assist agencies as they

implement zero trust architectures.

The Identity subsection of the CISA ZTMM specifically advises that:

1.	 Agencies should ensure and enforce user and entity access to the

right resources at the right time for the right purpose without granting

excessive access.

2.	 Agencies should integrate identity, credential, and access

management solutions where possible throughout their enterprise

to enforce strong authentication, grant tailored context-based

authorization, and assess identity risk for agency users and entities.

3.	 Agencies should integrate their identity stores and management

systems, where appropriate, to enhance awareness of enterprise

identities and their associated responsibilities and authorities.

Since its debut, Zero Trust has progressed rapidly from cool philosophy,

to stretch goal, to everyday business reality.

The term “Zero Trust” was first coined in 2010 by Forrester

researcher John Kindervag to conveniently encapsulate the growing

need for a “never trust, always verify” security ideal.

Zero Trust gained a major boost in May 2021, with Executive Order

(EO) 14028 “Improving the Nation’s Cybersecurity” —

which pushed United States government agencies to adopt

Zero Trust cybersecurity principles and adjust their network

architectures accordingly.

Okta’s The State of
Zero Trust Security
2023 revealed that:

https://www.okta.com/state-of-zero-trust/
https://www.okta.com/state-of-zero-trust/
https://www.okta.com/state-of-zero-trust/

Whitepaper Fine-Grained Authorization (FGA): A technical primer 6

Access controls are imperative for meeting regulatory,
framework, and standards obligations

Because of Identity’s essential role in securely connecting users to the

technology and resources they need, Identity requirements are frequently

included within a wide range of regulations, frameworks, and standards.1

For example:

1.	 Because most of the data making up corporate financial statements is

created by information technology systems, carefully controlling access

to these systems via IAM and related controls is vital to Sarbanes-Oxley

compliance.

2.	 With threat actors increasingly targeting Identity to gain initial access

and to execute intrusions, robust Identity-related controls are an

essential component of cybersecurity frameworks including SOC 2

(Service Organization Control 2).

3.	 The Payment Card Industry Data Security Standard (PCI DSS,

or simply PCI) explains industry best practices, including certain

requirements about limiting

	• to the absolute minimum

	• the number of employees who can access payment card data.

Collaboration and SaaS demand more granular and
flexible access controls

Use of software-as-a-service (SaaS) applications is more widespread than

ever — with consumers, employees and professionals of all types logging in

and out of multiple apps daily to do everything from collaborating on a work

project, to checking on test results after a doctor visit, to accessing mobile

banking resources.

[1] Meeting Regulatory,

Framework, and Standards

Obligations with Okta Identity

Governance, 2023

[2] Businesses at Work, 2024

In recent years, highly collaborative apps like Canva, Notion,

and Figma have seen rapid rates of adoption,2 putting pressure

on legacy SaaS providers to add more innovative features to

their own offerings.

https://www.okta.com/resource/whitepaper-identity-governance/thankyou/
https://www.okta.com/resource/whitepaper-identity-governance/thankyou/
https://www.okta.com/resource/whitepaper-identity-governance/thankyou/
https://www.okta.com/resource/whitepaper-identity-governance/thankyou/
https://www.okta.com/resource/whitepaper-identity-governance/thankyou/
https://www.okta.com/resource/whitepaper-identity-governance/thankyou/
https://www.okta.com/businesses-at-work/
https://www.okta.com/businesses-at-work/
https://www.okta.com/businesses-at-work/

Whitepaper Fine-Grained Authorization (FGA): A technical primer 7

But as SaaS applications grow increasingly sophisticated, collaborative, and

feature-rich, authorization becomes more complex.

For example, a single document may have multiple permissions (e.g., owner,

editor, commenter, view-only) that can be assigned to multiple users,

according to a host of parameters (e.g., role, location, title, etc.). Relatedly,

levels/hierarchies come into play when access is ‘inherited’ from a higher

level (e.g., an organization, a parent folder).

Developers need to determine how to provide the right level of access for a

growing number of applications and assets — and do it for a user base that

may span employees, partners, customers, contractors and more.

Usability requires speed and availability

Access control implementation has a direct effect on application

usability, because every millisecond spent in authorization can impact an

application’s overall latency.

Whitepaper Fine-Grained Authorization (FGA): A technical primer 8

Of course, access controls also need to be available. If a system becomes

unavailable to some or all users — whether due to an infrastructure outage,

an inability to scale with demand, or any other reason — reputation and

revenue can be harmed.

Meeting speed and scale requirements is especially important for

collaborative SaaS applications, where performance bottlenecks will

quickly become apparent to users.

What’s needed to make authorization work in a modern

SaaS landscape?

Traditional methods for securing and managing access —

including first-generation point solutions and in-application DIY

coding — simply don’t fulfill modern authorization requirements:

	◽ Centralized: Developers need a means to take authorization

out of the application code and implement access control and

permissions centrally, across the SaaS landscape.

	◽ Flexible: Authorization capabilities need to go beyond RBAC

and be flexible to address the varied and constantly evolving

access requirements of the SaaS user base.

	◽ Efficient: Re-creating the authorization wheel every time a

new application comes online is inefficient and keeps

development teams from shipping new innovation quickly.

Authorization solutions must be easy to deploy, adjust, and

scale as needs change over time.

	◽ Secure and compliant: Authorization logic that is difficult to

audit and manage leads to security and compliance risks.

The goal should always be to reduce points of vulnerability,

not add to them.

Whitepaper Fine-Grained Authorization (FGA): A technical primer 9

Comparing
different
approaches to
authorization
and access
control

Authorization and access control work hand in hand, but are subtly different:

if authorization involves defining a policy, access control puts the policies to

work. Admittedly, as both authorization policies and access controls have

evolved, the line distinguishing the two terms has blurred — but the subtle

differences are nevertheless something to be aware of whenever either

term is encountered.

Access control methods

In general, access controls confirm that the right people have the right

access to the right resources when they need it — ideally with the least

amount of friction.

In addition to implementing these controls, organizations may also be

required to produce reports (e.g., to achieve certification, at the request of

auditors, etc.) that capture who has what level of access to what resources

today and who had what level of access to what resources in the past. Such

requirements make an access control solution’s logging and auditability

features vitally important to achieving governance objectives.

The table below summarizes four major access control methods, presented

in the order in which they were developed.

Role-Based Access

Control (RBAC)

Authorization isn’t only about

human users: systems can

also authorize services, APIs,

devices, and other subjects

to perform operations.

Access controls can be enforced

without user authentication:

for example, access can be

defined based upon location,

network, certificate, etc.

It’s also worth noting that:

In RBAC, permissions are assigned to users based on their role in a

system or organization.

Example: a user needs the editor role to edit content.access that

information to make authorization decisions.

https://www.okta.com/identity-101/authorization/

Whitepaper Fine-Grained Authorization (FGA): A technical primer 10

Role-Based Access

Control (RBAC)

Attribute-Based

Access Control (ABAC)

RBAC systems enable you to define users, groups, roles, and

permissions, then store them in a centralized location. Applications

access that information to make authorization decisions.

The main advantage of RBAC is its simplicity and ease of user

management, as a single role is easier to remove than many individual

permissions at a user level.

However, RBAC quickly becomes impractical when you need to

specify permissions per specific resource
(e.g., a user can edit a specific document, etc.)

RBAC can also lead to ‘role explosion,’ as organizations attempt to

group permissions in different sets
(e.g., “Title X - Team Y - Location Z”).

In ABAC, permissions are granted based on a set of attributes that a

user or resource possesses (e.g., department, location, seniority, work duties).

Example: a user assigned both marketing and manager attributes is

entitled to publish and delete posts that have a marketing attribute.

Applications implementing ABAC need to retrieve information stored

in multiple data sources — like RBAC services, user directories, and

application-specific data sources — to make authorization decisions.

ABAC systems support much more granular permissions than

RBAC, but have the downside that they require retrieving all the data

required to evaluate access policies up front by querying multiple

databases and services, potentially creating noticeable latency.

Policy-Based

Access Control (PBAC)
PBAC is the ability to manage authorization policies in a centralized

way that’s external to the application code.

Whitepaper Fine-Grained Authorization (FGA): A technical primer 11

Policy-Based

Access Control (PBAC)

Relationship-Based

Access Control (ReBAC)

PBAC is an extension of ABAC where additional dimensions

(policies) can be created on top of attributes and roles. PBAC

typically requires a policy engine and a policy definition language

to define and enforce rules. Policy engines can be centralized or

deployed with the application and policy rules are typically defined

in the form of code/rules.

While moving authorization logic out of application code offers

advantages, PBAC systems still need to retrieve data from

multiple sources to inform the policy, and policies themselves

must be managed.

ReBAC enables user access rules to be conditional on relations that a

given user has with a given object and that object's relationship with

other objects.

Example: a given user can view a given document if the user has

access to the document's parent folder.

ReBAC is a superset of RBAC. ReBAC also lets you natively solve for

ABAC when attributes can be expressed in the form of relationships.

Example: ‘a user’s manager’, ‘the parent folder’, ‘the owner of a

document’, ‘the user’s department’ can be defined as relationships.

The ReBAC and PBAC methods contain similar components (e.g.,

an engine and a schema/language model); however, they differ in

how authorization is evaluated. With ReBAC, the access is based

on a relationship (graph) between resources, stored in a centralized

engine/database, allowing companies to implement authorization

based on unique relationship types like hierarchy or nested relations.

ReBAC systems offer the dual advantages that both authorization

logic and authorization data are centralized in the ReBAC database;

however, data synchronization processes must be in place to write

the data to the ReBAC database.

Whitepaper Fine-Grained Authorization (FGA): A technical primer 12

Fine-grained authorization (FGA)

Fine-grained authorization implies the ability to grant specific users

permission to perform certain actions in specific resources. The actions

themselves can be tremendously precise; for example, a user could be

assigned permission to:

	• View all records

	• View a specific record

	• View only a subset of fields within a specific record

Well-designed FGA systems allow you to manage permissions for

millions of objects and users — even permissions that can change

rapidly as a system continually adds objects and updates access

permissions for its users.

Whitepaper Fine-Grained Authorization (FGA): A technical primer 13

FGA in practice: Zanzibar, Auth0 FGA, and OpenFGA

Google released the Zanzibar whitepaper in 2019, describing the platform

that handles creating, storing, and checking trillions of user permissions

across all of Google’s applications (e.g., Calendar, Cloud, Drive, Maps,

Photos, and Youtube) and laying the groundwork for a globally consistent

and uniform access control service.

Based on ReBAC, Zanzibar uses object-relation-user tuples to store

relationship data, then checks those relations for a match between a user

and an object.

Consider the example of Google Drive: access can be granted either to

documents or to folders, as well as to individual users or users as a group,

and access rights regularly change as new documents are created and

shared with specific users or groups.

As Google’s whitepaper only described the theory behind Zanzibar, many

proprietary implementations and open source alternatives have emerged.

Designed by Okta and donated to the Cloud Native Computing Foundation

(CNCF) — of which Okta is a key maintainer — OpenFGA is a Zanzibar-

based open-source authorization solution that allows developers to build

granular access control using an easy-to-read modeling language and

friendly APIs.

However, organizations that choose OpenFGA must also take on a long list

of operational management responsibilities (see table, below).

In contrast, Auth0 FGA uses OpenFGA as the authorization engine, but

takes care of the complexities of hosting, scaling, etc. — so customers can

focus on implementing authorization, rather than building and maintaining

infrastructure.

ReBAC systems based on Zanzibar store the data necessary

to make authorization decisions in a centralized database, and

applications only need to call an API to make authorization decisions.

https://research.google/pubs/pub48190/
https://cncf.io/
https://openfga.dev/
https://auth0.com/fine-grained-authorization

Whitepaper Fine-Grained Authorization (FGA): A technical primer 14

Feature OpenFGA Auth0 FGA

Availability Organizations are responsible for availability. OpenFGA
currently supports Postgres and MySQL, which must
be failed over to another replica in a data emergency.

Deployed in two cloud regions per jurisdiction (US/
Australia/Europe) and uses a database configured
with Active-Active replication, to be able to survive a
regional AWS failure.

Scalability Organizations must run their own performance
and load testing.

Auth0 FGA has validated this with 1M RPS and 100
billion relationship tuples.

Cloud
security

Organizations are responsible for securing
the cloud perimeter.

Okta is responsible for securing the cloud perimeter.

Database
migrations

Organizations must run their own database migrations,
which can lead to downtime.

Okta runs database migrations with no downtime.

Backups Organizations must run their own database backups. Auth0 FGA database supports point-in-time recovery
and is backed up frequently.

Security
patches

Organizations must update their OpenFGA version. Okta updates OpenFGA with the latest security
patches.

Monitoring Organizations must monitor the uptime/latency and
handle production issues.

Okta monitors uptime and latency and is responsible
for resolving production issues with the product.

Status page Organizations must manage their own
OpenFGA communications.

Okta provides a status page to monitor availability.

Support No support is provided. Okta provides enterprise support with Technical
Account Managers, 24x7 pager support, Premier
support options, and SLAs, in accordance with the
customer's support level.

Dashboard No dashboard is available. Okta offers an SSO-enabled dashboard, where
multiple users can collaborate on FGA stores and
models, and where admins/developers can manage
API keys.

Cloud
infrastructure
provisioning

Organizations must manage the cloud infrastructure. Okta provisions and manages the cloud services
required to run Auth0 FGA.

Autoscaling Organizations must configure their own
autoscaling policies.

Okta configures services and databases to autoscale.

Disaster
recovery

Organizations must implement their own disaster
recovery processes.

Okta has disaster recovery processes in place for
Auth0 FGA.

Data
residency

Organizations must ensure compliance with data
residency laws.

Okta supports compliance with each country’s data
residency laws, including our own services and those
of our subprocessors.

https://auth0.com/blog/getting-unlimited-scalability-with-okta-fine-grained-authorization/
https://status.fga.dev/
https://auth0.com/docs/troubleshoot/customer-support/auth0-enterprise-and-premier-support
https://dashboard.fga.dev/

Whitepaper Fine-Grained Authorization (FGA): A technical primer 15

Key Auth0 FGA
concepts and
terminology

The Auth0 FGA service answers authorization checks by determining

whether a relationship exists between an object and a user.

Each check request references the authorization model against all the

known object relationships and returns an authorization decision

(i.e., true or false).

To learn more…

Please visit the Fine-Grained Authorization (FGA) Concepts

documentation page for additional details including

illustrative snippets.

Authorization
model

An authorization model combines one or more type definitions.
This is used to define the permission model of a system.

Together with relationship tuples, the authorization model
determines whether a relationship exists between a user and an
object.

Store A store is an Auth0 FGA entity used to organize authorization
check data.

Each store contains one or more versions of an authorization
model and can contain various relationship tuples.

Relationship
tuple

A relationship tuple is a base tuple/triplet consisting of a:

•	 User: Expressed as a combination of a type, an identifier, and
an optional relation, a user is an entity in the system that can be
related to an object.

•	 Relation: A relation is a string defined in the type definition
of an authorization model. Relations define a possible
relationship between an object (of the same type as the type
definition) and a user in the system.

•	 Object: Expressed as a combination of a type and an
identifier, an object represents an entity in the system. Users'
relationships to it are defined by relationship tuples and the
authorization model.

Tuples may add an optional condition, like conditional relationship
tuples. Relationship tuples are written and stored in Auth0 FGA.

Check
request

A check request is a call to the Auth0 FGA check endpoint,
returning whether the user has a certain relationship with an
object.

https://docs.fga.dev/fga-concepts

Whitepaper Fine-Grained Authorization (FGA): A technical primer 16

Auth0 FGA
Modeling
Language

Auth0 FGA's Domain-Specific Language (DSL) builds a representation of a

system's authorization model, which informs Auth0 FGA's API on the object

types in the system and how they relate to each other.

JSON syntax is used to call API directly or through the SDKs, while DSL is

used to interact with Auth0 FGA in the Playground, dashboard, or CLI.

In the DSL example above:

	• The authorization model describes four types of objects: user, domain,

folder and document.

	• The domain type definition has a single relation called member that only

allows direct relationships.

	• The folder and document type definitions each have five relations:

parent_folder, owner, writer, viewer and can_share.

To learn more…

For more information — including detailed examples and code

snippets — please visit the Modeling Language documentation page.

DSL	 JSON

model
schema 1.1

type user

type domain
relations

define member: [user]

type folder
relations

define can_share: writer
define owner: [user, domain#member] or owner from parent_folder
define parent_folder: [folder]
define viewer: [user, domain#member] or writer or viewer from parent_folder
define writer: [user, domain#member] or owner or writer from parent_folder

type document
relations

define can_share: writer
define owner: [user, domain#member] or owner from parent_folder
define parent_folder: [folder]
define viewer: [user, domain#member] or writer or viewer from parent_folder
define writer: [user, domain#member] or owner or writer from parent_folder

https://play.fga.dev/
https://docs.fga.dev/modeling/configuration-language

Whitepaper Fine-Grained Authorization (FGA): A technical primer 17

Getting started
with Auth0 FGA

The online documentation details a three-step process to help developers

get started with Auth0 FGA. The subsections introduce and summarize

these steps, but are in no way a substitute for the online resources, which

include extensive explanations and code snippets.

Define your authorization model

Defining an authorization model requires codifying an answer to the

question, “Why could user U perform an action A on an object O?” for all

use cases or actions in your system.

While this may seem intimidating at first, following the iterative process

outlined below will help you quickly and completely fulfill your needs.

To learn more…

For more information — including detailed examples and code

snippets — please visit the Modeling Language documentation page.

Pick the most

important feature
Start

List the object

types

List relations for

those types

Define

relations

Test

the model

https://docs.fga.dev/
https://docs.fga.dev/modeling/configuration-language

Whitepaper Fine-Grained Authorization (FGA): A technical primer 18

Step 1 - Pick the most important feature

A feature, in the context of this document, is an action or related set of

actions your users can perform in your system.

We recommend starting with the most important feature, because you're

probably more familiar with the authorization requirements for this feature

than for less important ones.

Once you've picked a feature, describe its authorization related scope using

simple language, for example:

	• “A user can create a document in a drive if they are the owner of

the drive.”

	• “A user can share a document with another user or an organization as

either editor or viewer if they are an owner or editor of a document or if

they are an owner of the folder/drive that is the parent of the document.”

Tip: Avoid using the word "roles", as this ties you to an RBAC way of thinking.

Whitepaper Fine-Grained Authorization (FGA): A technical primer 19

Step 2 - List your object types

Next make a list of the types of objects in your system. For example:

	• User

	• Document

	• Folder

	• Organization

	• Drive

Tip: You might be able to identify the objects in your system from your

existing domain/database model.

Whitepaper Fine-Grained Authorization (FGA): A technical primer 20

Step 3 - List relations for those types

Each of the types you defined previously has a set of relations. To identify

relations, we can perform an exercise similar to the previous step. Relations

for a type {type} will be all of these:

	• Any noun that is the {noun} of a "{noun} of a/an/the {type}" expression.

Tip: These are typically the Foreign Keys in a database.

	• Any verb or action that is the {action} of a "can {action} (in) a/an {type}"

expression; these are typically the permissions for a type.

Continuing the example, the resulting lists of relations for each type look like:

Document

	• parent

	• owner

	• editor

	• viewer

	• can_share

	• can_write

	• can_view

	• can_change_owner

Organization

	• member

Folder

	• owner

	• viewer

	• parent

	• can_create_folder

	• can_view

	• can_create_

document

Drive

	• owner

	• can_create_folder

	• can_create_

document

Whitepaper Fine-Grained Authorization (FGA): A technical primer 21

Step 4 - Define relations

Next, you’ll create a relation definition for each of the relations you identified.

This stage encodes the answers to the question we asked at the beginning

of this process: “Why could user U perform an action A on an object O?”.

For example, combining the type definitions for document and organization,

we have:

model
schema 1.1

type user

type organization
relations

define member: [user, organization#member]

type document
relations

define owner: [user, organization#member]
define editor: [user, organization#member]
define viewer: [user, organization#member]
define parent: [folder]
define can_share: owner or editor or owner from parent
define can_view: viewer or editor or owner or viewer from parent or editor
from parent or ow
define can_write: editor or owner or owner from parent
define can_change_owner: owner

Whitepaper Fine-Grained Authorization (FGA): A technical primer 22

Step 5 - Test your model

Once you’ve defined your organizational hierarchies as types, and the

most important type for your feature, you want to ensure everything is

working as expected.

This is akin to answering the question, “Can user U perform an action

A on an object O?” in a variety of formulations that correspond to specific

test cases.

To answer these questions, the Auth0 FGA service checks if a user

has a particular relationship to an object, based on your authorization

model and relationship tuples.

What you want is to ensure that, given your current authorization model

and some sample relationship tuples, you get the expected results for

those questions.

The Tuple Management Tool within the Auth0 FGA Dashboard provides visualization
on any relationships between user and object.

Whitepaper Fine-Grained Authorization (FGA): A technical primer 23

Step 6 - Iterate

To complete your authorization model, we recommend starting small and

writing tests to make sure your models perform the way you expect.

Then, once you’ve gotten a feel for things, iterate through your remaining

features.

https://docs.fga.dev/modeling/testing

Whitepaper Fine-Grained Authorization (FGA): A technical primer 24

Action What it does When to use

Manage user
access

Grants (or removes) a user’s
access to a particular object

Granting access with a relationship tuple is a core part of Auth0 FGA (without any
relationship tuples, any check will fail).

You should use:

•	 authorization model to represent what relations are possible between the users
and objects in your system

•	 relationship tuples to represent the facts about the relationships between
users and objects in your system

Manage
group access

Grants (or removes) a group of
users’ access to a particular
object

Adding a relationship tuple specifying that a group has a relation to an object
is helpful in cases where you want to encompass a set of users with the same
relation to an object.

For example:

•	 Grant a group of engineers viewer access to roadmap.doc

•	 Create a block_list of members who can't access a document

•	 Sharing a document with a team

Manage
group
membership

Update a user's membership
within a group by adding and
removing them from it

Group membership can be helpful as you do not need to iterate over all of the
group's resources to add or revoke access to particular objects.

You can add a relationship tuple indicating that a user belongs to a group, or
delete a tuple to indicate that a user is no longer part of the group.

For example:

•	 An employee is hired at a company and thus gains access to all of the
company's resources

•	 An employee quits and thus loses access to all of the company's resources

Manage
relationships
between
objects

Grant (or removes) a user’s
access to a particular object
through a relationship with
another object

Giving user access through a relationship with another object is helpful because it
allows scaling as the number of objects grows.

For example:

•	 organization that owns many repos

•	 team that administers many documents

Transactional
writes

Updates multiple relationship
tuples in a single transaction

Updating multiple relationship tuples is useful to keep
system state consistent.

Write your authorization data

With your authorization model defined, you now need to programmatically

write authorization-related data to Auth0 FGA.

The table below summarizes the main ways of doing so.

To learn more…

Much greater detail is available in the Write Your Authorization Data

documentation page.

https://docs.fga.dev/writing-data

Whitepaper Fine-Grained Authorization (FGA): A technical primer 25

Add authorization to your API

With your authorization model defined, and knowing how to write

authorization data to Auth0 FGA, the final step is to update your code to

start authorizing user requests.

Broadly, doing so will involve:

1.	 Getting your API keys from the dashboard so that your app can

call the Auth0 FGA API

2.	 Installing the SDK client for the language of your choice (Node.js, Go,

.NET, Python, Java, CLI)

3.	 Configuring the SDK client to call Auth0 FGA

4.	 Updating relationships tuples by programmatically writing authorization

data to an Auth0 FGA store

5.	 Performing a check against an Auth0 FGA store to validate functionality

(e.g., to determine whether a user has a certain relationship with

an object)

6.	 Performing a List Objects request against an Auth0 FGA store to

determine all the objects of a given type a user has a specified

relationship with

7.	 Integrating within a framework, such as Fastify or Fiber

To learn more…

Much greater detail is available in the Add Authorization to Your API

documentation page.

https://docs.fga.dev/integration/getting-your-api-keys
https://docs.fga.dev/integration/install-sdk
https://docs.fga.dev/integration/setup-sdk-client
https://docs.fga.dev/integration/update-tuples
https://docs.fga.dev/integration/perform-check
https://docs.fga.dev/integration/perform-list-objects
https://docs.fga.dev/integration/framework
https://www.fastify.io/
https://docs.gofiber.io/
https://docs.fga.dev/integration

Whitepaper Fine-Grained Authorization (FGA): A technical primer 26

Conclusion The need for more granular and flexible access controls — without

sacrificing security or compliance — is clear.

However, reaching this state is easier said than done, and the subjects of

authorization and access control can be challenging, especially considering

that Identity and Access Management is just one of many functions that

app developers need to implement.

To ensure your authorization function delivers for you and your users, both

today and well into the future, look for a fine-grained authorization solution

that provides:

	◽ Low latency: Every millisecond you spend in authorization will impact

your application’s overall latency.

	◽ Availability and reliability: Authorization is mission critical and any

downtime can disrupt user access in your application.

	◽ Scalability: Your authorization solution should be capable of

supporting your business as your user base grows — potentially even

accommodating sudden and massive spikes.

	◽ Policy flexibility: Support for different kinds of policies like RBAC or

ABAC give you the ability to choose the best policy for your app, and to

update policies as your needs evolve.

Whitepaper Fine-Grained Authorization (FGA): A technical primer 27

Okta can help Auth0 FGA delivers authorization at scale and gives businesses the power

to simplify access control across multiple applications, parameters, and

users. It’s authorization as a service, allowing developers to design and

implement permissions in a way that’s flexible, scalable, and easy to use.

	◽ Manage authorization at scale, without complexity. With Auth0 FGA,

developers can update and manage authorization policies from one

centralized location without touching application code. Scale access

controls as your product and user base grows.

	◽ Get as granular as needed, with absolute control. Easily manage

groups, teams, organizations, or any set of users, and assign them

permissions on any resource or groups of resources. Developers

can define access down to the finest detail, allowing greater security

and compliance.

	◽ Be flexible with permissions and access. With Auth0 FGA, app owners

and developers have greater flexibility in defining how users grant

permissions and access. Their users can then create authorization rules

around multiple parameters, beyond just roles.

	◽ Reduce Latency. Auth0 FGA is designed to provide high scalability

while minimizing latency, by routing requests to the closest server and

responding to authorization queries very quickly. Users can move at the

speed of their business.

	◽ Save development time and resources. Auth0 FGA saves development

time and resources by making it easier to build and scale software with

sophisticated authorization capabilities built in. It seamlessly integrates

with a business’ existing systems using developer-friendly tools like

APIs, SDKs, CLIs and IDE integrations.

	◽ Backed by the Okta brand. We pioneered trusted authorization, now

we’re pioneering FGA.

Whitepaper Fine-Grained Authorization (FGA): A technical primer 28

These materials and any recommendations within are not legal, privacy, security, compliance, or business advice. These materials

are intended for general informational purposes only and may not reflect the most current security, privacy, and legal developments

nor all relevant issues. You are responsible for obtaining legal, security, privacy, compliance, or business advice from your own lawyer

or other professional advisor and should not rely on the recommendations herein. Okta is not liable to you for any loss or damages

that may result from your implementation of any recommendations in these materials. Okta makes no representations, warranties,

or other assurances regarding the content of these materials. Information regarding Okta's contractual assurances to its customers

can be found at okta.com/agreements.

Additional developer resources

The latter sections of this document draw heavily upon the Auth0

FGA documentation, but what’s summarized herein is a tiny fraction

of that larger resource. For example, the online documentation

includes extensive code/syntax examples that are both too deep

and too extensive for this Technical Primer.

Closely related is the FGA Playground — an interactive environment

that allows developers to get hands-on with Auth0 FGA and

to put into practice the examples and lessons from the online

documentation.

Finally, we also encourage developers to explore:

	• fga.dev, which is the go-to starting point for all things Auth0 FGA

	• Zanzibar Academy, which provides an assortment of resources

explaining Google’s Zanzibar — the ReBAC model underlying

both Auth0 FGA and OpenFGA

https://www.okta.com/
http://okta.com/agreements
https://docs.fga.dev/fga
https://docs.fga.dev/fga
https://play.fga.dev/
https://fga.dev/
https://zanzibar.academy/

