
Managing Access
to Legacy Web
Applications with Okta

Okta Inc.
301 Brannan Street, Suite 300

San Francisco, CA 94107

info@okta.com
1-888-722-7871

2

Managing Access to Legacy Web Applications with Okta

How We Got Here� 3

Web Access Management, or WAM� 4

Authentication Patterns� 4

Bringing Legacy Apps into the Fold� 6

Decision Process—Step-by-Step� 7

Putting It All Together� 9

Other Common Use Cases� 9

Benefits of this Approach� 11

Conclusion� 11

Managing Access to Legacy Web Applications with Okta

3

Supporting Legacy Authentication
Methods with Okta

At Okta, our customers are the most innovative, forward-leaning, and bold enterprises in their respective

businesses. They look to Okta to securely connect their employees, partners, and customers to any

technology and Okta is built to manage access to thousands of applications and resources, right out

of the box. But no matter how innovative, organizations that have been around a while inevitably have

legacy resources that rely on the technologies of the previous generation. Authentication is one area

where older models persist; critical business applications use older approaches to authentication which

are closed and inefficient. Enterprises need to enable seamless, secure access to every application or

resource, so it must be able to support legacy and modern technologies. This whitepaper describes a

best-of-breed approach to this problem, one that takes advantage of the best of Okta and the most

effective legacy integration models, while simplifying the integration architecture.

How We Got Here

In the 1990s, many companies faced a problem: with the proliferation of web applications in the

enterprise, end user access was difficult to manage and a poor user experience inhibited adoption.

There was no ubiquitous standard for authentication that worked well for web applications, so many

organizations turned to Web Access Management (WAM) solutions like CA SiteMinder, Oracle Access

Manager, Tivoli Access Manager to control authentication and authorization to corporate resources.

WAM tools provide single sign-on, centralized policy management and reporting and auditing

capabilities for web applications.

In the late 2000s, two things happened: federated authentication standards like Security Assertion

Markup Language (SAML) and later OpenIDConnect (OIDC) gained popularity, and SaaS, PaaS and IaaS

started gaining traction in the enterprise. This is when Identity-as-a-Service (IdaaS) emerged as an

alternate approach, with a cloud-based bridge to the cloud and lightweight directory integration. By

leveraging the power of federation standards and the benefits of the cloud service model, IdaaS could

provide a great user experience across web applications without the need for expensive infrastructure

deployment or maintenance.

This shift continued, and now many organizations are beginning to centralize their Identity and Access

Management (IAM) programs around IdaaS, moving the center of gravity of access control to the cloud.

Of course, businesses still depend on legacy applications, so a modern IAM architecture cannot neglect

them. Enterprises need to modernize on-premises applications, or implement solutions that enable

more direct integration to IDaaS.

In this document, Okta will offer approaches that enterprises can employ to centralize access control

and visibility across legacy and cloud applications and provide a great end user experience, while

minimizing on-premises infrastructure.

Managing Access to Legacy Web Applications with Okta

4

Web Access Management, or WAM

There are generally considered to be two traditional WAM models: proxy-based, and agent- or plugin-

based. The proxy-based approach routes all web traffic through network traffic manager, where HTTP

requests can be denied or granted based on policies. This model introduced a single point of failure,

but it offers protocol-level granular access control without installing any software. With agent-based

approach, agents are installed on each app or web server. These plugins intercept HTTP requests,

call out to the centralized policy server, and enforce access rules before responding. This approach

removes the need to route all traffic through a proxy, which permits a distributed architecture, but

carries the burden of having to install, update, and manage the agent software on every app server

in your environment.

By contrast, modern standards like SAML and OIDC use a token-based approach. In this model, an

identity provider supplies a token to the application (service provider), such as a JSON Web Token

(JWT) or SOAP payload, with information about the user. With SAML, for example, the token is a SAML

assertion, a SOAP-based Web Service message, signed by an identity provider, which contains claims

about the user that application code can use to make access decisions. The token model uses the end

user’s encrypted browser context to exchange information between the identity provider (IdP) and the

service provider (SP)—that is, the app. The nature of this model eliminates the need for the IdP and the

SP to communicate directly, so networking changes are not required, no agents are required, and traffic

need not be routed through a proxy. These benefits have contributed to SAML and OIDC’s emergence

and rise in popularity and traditional WAM models are now falling out of vogue.

However, applications need to be modified to support SAML or OIDC natively. Because modernizing

these legacy applications competes with the enterprise’s other priorities, that’s not going to happen

immediately or completely. The result: a disjoint architecture. New applications support modern

standards, and older applications do not. IT Administrators must reconcile these two worlds with a

single identity architecture to realize the potential of IAM.

Authentication Patterns

If your high-level goal is to manage identity and access across all of your apps, a good starting point

is to understand the authentication patterns in use at your organization. At Okta, we’ve seen that web

applications use one of the following methods to authenticate the end user:

Managing Access to Legacy Web Applications with Okta

5

Modern Patterns

Okta supports modern methods natively. Modern methods include:

•	 Forms-based Authentication—This pattern uses a custom page to capture the end user’s username

and password to authenticate the user. Okta supports Forms-based Authentication natively using

our Secure Web Authentication plugin.

•	 SAML or WS-Fed-based Federation—This pattern allows end users to authenticate to an Identity

Provider, which issues secure tokens that the end user can use to access other service and

applications. Okta supports SAML and WS-Fed natively. You can read more about Okta and SAML

on the Okta developer site.

•	 OIDC-based Federation—This pattern is a modern version of SAML. It allows end users to

authenticate to service and provides a means to exchange identity information securely across

services. Okta supports OIDC natively. You can read more about Okta and OIDC on the Okta

developer site.

Legacy Patterns

•	 Okta does not support legacy patterns natively.

•	 No Authentication—This is also known as Anonymous Access. In this pattern, anyone can access

a site without authenticating first. For web applications intended to be public, this is fine, but

sometimes these pages require more security. In these cases, Okta recommends that customers

improve security by forcing authentication, and allowing only authenticated users to access the app.

•	 Header-Based Authentication—A web access management system prompts the end user for

authentication, then injects identity data into the HTTP Headers in the user’s browser for

consumption by the protected application. Common WAM systems include CA Siteminder, Oracle

Access Manager and Tivoli Access Manager. Okta recommends migrating to a modern proxy-based

architecture to accommodate this pattern.

•	 Client Certificate-based Authentication—This pattern utilizes a PKI certificate to authenticate the end

user to an application. This is facilitated by most web servers natively, but can also be implemented

using a WAM system. If the app cannot be modernized, Okta recommends leveraging a modern

proxy-based architecture to accommodate this pattern.

•	 Windows Authentication—This pattern is also called Kerberos authentication (depending on the

protocol used). This pattern silently logs the user using the active Windows domain session. This

requires domain permissions and only works for internal users by default. Okta recommends

integrating with a proxy-based architecture to provide remote access to these applications.

https://developer.okta.com/standards/SAML/
https://developer.okta.com/standards/OIDC/
https://developer.okta.com/standards/OIDC/

Managing Access to Legacy Web Applications with Okta

6

Bringing Legacy Apps into the Fold

Now that we understand the different patterns, let’s talk about how to approach integrating all of your

existing web applications into your IAM platform. We’ve used the following decision tree with customers

and it’s worked well. Here’s the whole thing, and after the jump we’ll step through it.

On-Prem Web
Apps

Is it a custom
app? Are

developer
resources
available?

Examples: CA
Siteminder,
Oracle Web

Access Manager,
IBM Tivoli

Headers-based
Kerberos/KCD
Forms-based
Anonymous

Okta=IDP
WAM=SP

SSO Policy
Reverse Proxy

SSO Policy
Reverse Proxy

OIDC, SAML,
WSFed Toolkits

Federation

Does the
app support

federation (SAML,
WS-Fed, OIDC)?

Is the app
protected by a
current WAM

solution?

Does the app use
a common legacy

auth model?

Do you own a
reverse proxy

Can it be
modernized?

No

No

Yes

Yes

Yes

Yes

Yes

No or Yes, but
looking to deprecate

No

Figure 1. Decision Making Process for Integration Legacy Applications into a Modern Identity Platform

Managing Access to Legacy Web Applications with Okta

7

Authentication (AuthN) versus
Authorization (AuthZ)

Authentication refers to the

binding of a user to an account

using some secure credential, like

a password. Authorization refers

to the enforcement of access

control within the app, and there

are two types, coarse-grained

and fine-grained. Authentication

restrictions, such as allowing

authentication to the application

only for certain groups, are a

common way to implement coarse-

grained authorization. Fine-grained

authorization protects individual

elements (e.g., pages, zones, or

even individual DOM elements)

within the application itself based

on the authenticated user’s

attributes or roles.

Legacy WAM tools can provide

very fine-grained authorization.

They usually do so in proprietary

ways, which makes it costly to

replace a WAM solution in scenarios

where fine-grained authorization

is a requirement. That is, without

replacing the app itself. So Okta’s

recommendation here is to figure

that additional complexity into your

cost analysis when determining if

full WAM replacement is right for

your organization right now.

Decision Process—Step-by-Step

•	 Does the app already support a modern pattern?

Determine whether the application supports SAML.

Most enterprise-focused web applications have a

built-in SAML capability, but the capability may

need to be enabled, and sometimes an add-on

needs to be purchased. Once the SAML capability is

enabled on the application, use an Okta Application

Network (OAN) pre-built SAML integration to

connect the application rapidly. Okta have over 800

SAML application integrations, but if for some reason

an integration is not available, create your own using

a SAML 2.0 Template App in the OAN. (And make

sure you let us know, so that we can add your app

to the catalog.)

•	 Can you modernize it? This applies mostly to

custom web applications. If you are able to modify

the application, it’s straightforward to add SAML

or OIDC support to an existing web application.

The implementation varies based on platform and

development language so the Okta Developer site

offers plenty of guidance across the most popular

platforms. Modernizing applications take some time

and effort, but it’s worth it. This approach is low-

cost to maintain, easy to integrate into Okta, simple

to administrate, requires no extra hardware, and it’s

standards-based, which reduces lock-in.

•	 Do you have a WAM deployed now? You may

already be using a WAM solution like CA Siteminder

or Oracle Access Manager to protect applications

that don’t support modern standards. As we

established above, though, not all WAM models are

alike, and it matters whether you’ve deployed an

agent-based model or a proxy-based model.

Managing Access to Legacy Web Applications with Okta

8

Agent-based model: If you’ve deployed WAM in an agent-based model, we’ve seen customers use

two approaches depending on their priorities:

i.	 Customers focused on business agility to onboard their new applications typically leave

the legacy on-premises WAM in place with the idea that over time, most workloads and

on-premises applications are moving to the cloud and this passive approach will reduce the

WAM footprint automatically and at some point, in the future, they would be able to turn it off.

This has the advantage of avoiding the up-front modernization costs, while still centralizing

management in Okta, improving the end user experience, and introducing a migration vector.

ii.	 Customers focused on cost reduction and standardization on a single platform have

aggressively migrated on-premises applications over to Okta either using federated proxies/

agents or converting the applications to support federation. As described above, modernization

requires up-front development work, but the benefits are often worth it.

Proxy-based model: If you’ve deployed WAM in a proxy-based model, you have two options: you

can leave it in place and federate Okta to it, or you can eliminate redundancy and simplify your

architecture by leveraging a traffic manager/reverse proxy like F5 BIG-IP, Citrix NetScaler, Akamai

Enterprise Access, or ICSynergy SP Gateway. We’ll talk more about the migration on the next step.

•	 Do you currently own a traffic manager? If you own one of the products listed above, you may

not know this, but you can use that to facilitate a proxy-based WAM architecture. These products

are typically deployed to manage network traffic and/or serve as a reverse proxy to make internal

applications internet-accessible. If you currently own one of these products, Okta recommends

leveraging the access management capabilities therein to extend Okta to the enterprise.

Note: From working with our customers, we’ve learned that if you’ve got more than

about 25 applications that are currently integrated into a WAM solution, especially if

they’re using an agent-based model, this option is recommended. That’s because the

time, effort, and coordination involved in migrating that many applications or more can

be significant and organizational delays are common.

https://www.okta.com/partners/f5/
https://www.okta.com/partners/citrix/
https://enterprise-access.akamai.com
https://enterprise-access.akamai.com
https://www.icsynergy.com/spgateway/

Managing Access to Legacy Web Applications with Okta

9

Putting It All Together

So, what does this best-of-breed architecture look like? Figure 2 below shows how everything

fits together.

Corporate Firewall

SAML/OIDC

Legacy
AuthenticationS

A
M

L
/O

ID
C

Network Traffic
Manager/Reverse Proxy

Modern Web
Applications

Legacy Web
Applications

This is a simple architecture, and that’s really the point. The primary benefit is that it uses whatever’s

already in place.

By integrating with network traffic managers, Okta provides a seamless, single sign-on experience for

end users whether they’re accessing on-premises applications or SaaS solutions. Proxying and routing

HTTP traffic, managing the load, enforcing security at the networking layer are all handled by best-

of-breed technologies, which ensure a consumer grade experience for end users from anywhere in

the world.

Other Common Use Cases

Secure Access to On-Prem Apps from Outside the Firewall

Enterprises typically use Okta for the 5,000+ integrations pre-built into the Okta Application Network.

Okta also has full support for federation protocols for additional applications that support federation

standards. Applications in the cloud with any kind of login form can, additionally, be easily added to

Okta. When applications are behind the firewall, authentication is not enough. Users must gain network

access to the application. This can be cumbersome with the standard VPN approach, requiring multiple

steps for the end user.

With a leading reverse proxy integrated with Okta, end users can authenticate once into Okta and

seamlessly access on-prem applications. This architecture extends Okta’s authentication capability

to applications that do not have native authentication mechanisms or support header-based

authentication. Finally, a reverse proxy provides an additional layer of security for on-prem applications

by securing all HTTP traffic to and from an application.

Figure 2. Reference Architecture for Best-of-Breed Approach to Legacy Application Access

Managing Access to Legacy Web Applications with Okta

10

Contractor and Partner Access to On-Prem SharePoint Portals

It can be a challenge to expose SharePoint Server (on-prem) to external users such as contractors or

partners. Okta can integrate to SharePoint for SSO via federation. However, in order to use certain

SharePoint modules, such as SharePoint business intelligence features, users must have a Kerberos

token. Network proxies support the key requirement of exchanging SAML assertions for Kerberos tokens,

enabling use of the full set of functionality in SharePoint. Okta, paired with best-in-class network

proxies, can manage contractor or partner identities and enforce multi-factor authentication.

Multi-Factor Authentication for Legacy Applications on IaaS

Enterprises that are moving on-prem servers to IaaS need to have a strategy for protecting access to

those resources. One of the benefits of moving to IaaS may be that the service can be more easily

reached from any network. Network Proxies play a key role in exposing these on-prem servers to the

internet. Given the greater exposure, a good practice is to require multi-factor authentication to access

these services. Okta can easily add multi-factor authentication with a soft token (iOS, Android or

Windows Phone), SMS or voice as factors.

One End User Portal for All Applications, On-Prem and Cloud

The Okta end user portal is built to make it easy for end users to access all their applications from one

place. The portal is customizable by end users, which drives a high level of user adoption. Typically,

organizations using the Okta portal want all the end users’ applications exposed and accessible through

the portal. Integrating Okta with Network Proxies enables the user to log in once to Okta, and access all

applications, cloud and on-prem, in one place.

Supporting Legacy Authentication Methods with Okta

11

About Okta

Okta is the foundation for secure connections between people and technology. By harnessing the power of the

cloud, Okta allows people to access applications on any device at any time, while still enforcing strong security

policies. It integrates directly with an organization’s existing directories and identity systems, as well as 4,000+

applications. Because Okta runs on an integrated platform, organizations can implement the service quickly at large

scale and low total cost. More than 2,500 customers, including Adobe, Allergan, Chiquita, LinkedIn, MGM Resorts

International and Western Union, trust Okta to help their organizations work faster, boost revenue and stay secure.

For more information, visit us at www.okta.com or follow us on www.okta.com/blog.

Benefits of this Approach

This solution integrates best-of-breed technologies to do exactly what they’re best at: Okta provides

secure and seamless access to any application or resource, a traffic manager routes network traffic

efficiently, and access policies on the traffic manager integrate with legacy applications and empower

fine-grained authorization for legacy web applications. This solution offer benefits not possible with

any single-vendor solution on the market today.

•	 Embrace Standards—Enterprises want to avoid vendor lock-in and using SSO standards like SAML

for application access helps keep IT architecture resilient to change.

•	 Eliminate Redundancy—By fully utilizing the functionality of IdaaS and network traffic managers,

legacy WAM providers can often be removed from the environment all together.

•	 Scale and Perform—Traffic Managers and Reverse Proxies are purpose-built to protect some of

the largest applications in the world.

•	 Consumer-Grade End User Experience—Extend Okta’s best-in-class SSO user experience to

applications that IdaaS solutions are not optimized to integrate with.

•	 Support All New Use Cases—Integration with Okta IdaaS to position your organization to enforce

multi-factor authentication and secure the mobile experience for every web app in your company.

Conclusion

By embracing the cloud, you will help your business to accelerate and gain critical advantages over your

less agile competitors. Of course, the transition does not happen in the blink of an eye, so it’s important

to support your legacy systems for the foreseeable future. A modern identity management platform and

a smart access management strategy will accelerate your IT evolution while bridging the gap between

your trusty on-premises applications and the new technologies you’re adopting.

Getting Started with Your Free Trial

To discover how easy it is to overcome identity and access management challenges in the cloud, visit

www.okta.com/free-trial to get started with Okta.

http://www.okta.com/blog
http://www.okta.com/free-trial

	Bookmark 1

