
Okta Inc.
301 Brannan Street

San Francisco, CA 94107

info@okta.com
1-888-722-7871

Building a Well Managed
Cloud Application

Contents

White paper

1 Introduction

1 Working with Okta

2 A Well Managed Cloud Application

2 Single Sign-On and Authentication

5 Directory Integration

6 User and Access Management—The Identity Lifecycle

7 Beyond User and Access Management

7 Conclusion

8 Appendix

8 Case Study—Salesforce.com

9 Sample SAML Request

9 Sample SAML Assertion

11 Sample WSDL for Delegated Authentication Implementation

13 User Management APIs

14 General API Recommendations

14 Becoming an Okta ISV Partner

14 About Okta

1

White paper

Introduction

Okta is the market leading on-demand identity and access

management service that enables enterprises to accelerate the

secure adoption of their cloud and web based applications.

Okta supports integration with a variety of single sign-on options

across the hundreds of applications in the Okta Application

Network, including delegated authentication, standard-based

protocols such as Security Assertion Markup Language (SAML), or

even proprietary vendor specific protocols.

For those customers with Microsoft Active Directory (AD)

deployments, Okta also provides a simple, wizard driven process to

integrate with AD as the authoritative identity store. The integration

allows user synchronization, application provisioning and de-

provisioning to extend beyond the on-premise environment

controlled by the domain controller. User access to Okta itself can

be delegated to the on premise instance of AD. All of this is done

via the Okta Active Directory agent that can be easily installed and

configured without additional network or firewall configuration.

To both improve the depth of integration with our current

Independent Software Vendor (ISV) partners and to provide

guidance to future ISV partners, we have developed this whitepaper

to better articulate the range of integration options that should be

considered by ISVs. The end goal of both this guidance and our

collaboration with partners is to improve the ability of our joint

customers to more broadly adopt, deploy and use cloud based

applications.

Working with Okta

If you are like most rapidly growing SaaS ISVs, your engineering

resources are focused on creating features for your customers that

help differentiate the business functionality of your product in the

market. You may not have the engineering expertise or the desire

to grow it, or tackle the range of user authentication and user

management integration challenges that customers are asking you

to solve as your application is adopted more broadly across their

organization.

Partnering with Okta can help you address these challenges.

By working with Okta, you can:

• Increase user adoption and overall usability across your

installed base by simplifying user access and change

management.

• Integrate into on premise, corporate directories, such as

Microsoft Active Directory.

• Take advantage of best-of-breed authentication and

provisioning capabilities without distracting your developers

from your core product functionality.

• Reduce friction in sales cycles by partnering with IT around

service deployments, user management, and security as well

as integration with behind-the-firewall environments.

2

White paper

A Well Managed Cloud
Application

When considering what it means to be a well-managed application,

ISVs should think about end-users, IT, Business Administrators, and

Business leaders.

Ease of use is essential for users when accessing any resources or

applications. IT has to strike a balance between ease of use and

security. A well-defined identity infrastructure is important. But

just as important is the ability for each application to integrate with

this infrastructure and with other applications. End-users do not

want to remember different passwords for different systems. The

ability to single sign-on with a single set of credentials eliminates

password fatigue and reduces extra overhead of unnecessary help

desk calls for password resets.

Customers also care about usage, productivity, and ROI. They want

to know their users are getting access to the application when they

need it, that the application is improving their competitiveness, and

that they are getting a great return on their investment.

Externalizing user management capabilities via APIs enables IT

administrators to efficiently set up application accounts for their

end-users. It also improves security by allowing customers to

centrally manage application access and disable access in a timely

fashion.

Capturing application usage and account information helps

customers to understand how the applications are being used

across the board. Providing auditable and detailed reporting on

user activities and permissions is important in satisfying customer

compliance initiatives.

Okta strongly encourages ISVs to implement these features to help

improve manageability of your application. These are also some of

the key criteria identified by many customers and they are reflected

in our Okta scale. The more criteria satisfied by your application,

the higher the Okta ranking will be for your application. Customers

can use the scale when they are evaluating new cloud applications

they want to adopt, and ISVs can use the scale to help ensure their

applications continue to meet market demand. For more detailed

information about the Okta Scale, visit www.okta.com/why-okta/

okta-scale.html.

Whether or not your customer is working with Okta, these features

will guarantee better end-user and IT adoption by allowing tighter

integration with your customers’ existing IT infrastructure—a major

criterion to deployment success of any cloud application.

Single Sign-On and Authentication

User Authentication or single sign-on is a simple concept and

is also one of the most challenging problems to solve. Most

applications start with a standalone model where users and their

credentials are created, stored and managed within the application

itself. Each application the enterprise adds to its portfolio also

adds to these identity islands. Dealing with multiple applications

becomes a hassle – both for the end-users and for administrators

fielding all the issues from password resets to account lockouts.

For customers, especially those with a reliable authentication

mechanism already in place, the solution is to centralize access.

Rather than authenticating a user with another set of credentials,

many customers prefer the vendor to provide the option to

integrate with an existing identity provider of choice to authenticate

and authorize a user. There are several approaches.

Federated Single Sign-On

Federated Single Sign-On or Identity Federation is a common

approach when the customer wants an application to rely on

an existing identity provider. In a federated scenario, rather than

authenticating a user within your application, your application

establishes a trust relationship with the customer’s chosen identity

provider and allows any user authenticated through the identity

provider to have access to your application. For example, if your

application relies on Yahoo as the identity provider, any user with

a Yahoo account who has been authenticated through Yahoo

will have access to your application. This identity provider may

be another trusted application, a single sign-on solution or any

other system that is aware of all the users and has the ability to

authenticate and maintain an authenticated session.

Federation with Security Assertion Markup
Language (SAML)

SAML has been the most widely used standard for implementing

federated single sign-on. In the SAML terminology, the identity

provider authenticates the users for the relying parties. In this case,

your application is the relying party integrated with the customer’s

identity provider of choice. Okta supports SAML integration with

many application vendors. The following is a guideline to help you

with your SAML implementation including best practices in helping

customers deploy a SAML integration between your application and

their identity providers.

3

White paper

• User ID Location: determines the location in the assertion

where the user ID is identified which can be in the

• <Subject> statement or in the <Attribute> section of the

assertion. For the latter, the attribute name must also be

specified.

• Login URL: specifies the Identity Provider URL where your

application needs to obtain the SAML assertion.

• Logout URL: specifies the URL where your application will

direct the user upon a logout from your application.

Note: The parameters above are based on a SAML 2.0

implementation. SAML 1.1 differs slightly.

Here is a self-administration example for SAML configuration from

Google Apps.

Figure 1: Google Apps SAML Configuration

In Google Apps, the SAML configuration is accessible by the

administrator under the domain management section. As you can

see, the parameters are clearly listed and can be easily configured.

Information from the identity provider such as certificate related

information and the assertion format is required. The customer

will be responsible to gather this information from the chosen

identity provider.

When using Okta as an identity provider, we provide vendor-

specific integration guidelines to make this easier and error-proof

for customers. Okta will show customers the exact information

needed for your SAML configuration. A few cut and pastes and your

application is federated with Okta!

1. Implementing SAML: As the service provider, you will be

responsible for issuing the initial SAML request to the identity

provider. You also need the ability to receive and parse the

SAML assertion coming back from the identity provider. An

understanding of the SAML protocol is obviously required.

 Oasis provides a lot of material on SAML. A good technical

overview is available here: Security Assertion Markup

Language (SAML) V2.0 Technical Overview. These types of

tutorials are the best place to start. You do not need to read

through the entire SAML 2.0 specification. As a reference, here

is the specification published on OASIS: http://www.oasis-

open.org/specs/#samlv2.0.

 From an implementation standpoint, many open source

libraries are available: http://saml.xml.org/wiki/saml-open-

source-implementations provides a list of some of the

commonly used libraries including OpenSAML.

See “Appendix” for a sample SAML request and a SAML assertion.

2. Testing Your Implementation: Once you have completed your

implementation, you need to test your application with a

SAML-aware identity provider. If you do not have an identity

provider for testing, Okta can help you with your testing and

validation. Just as we integrate with many of the vendors

through SAML, Okta will act as the identity provider where

users are being authenticated.

3. Self administration and set-up: A successful SAML

implementation does not automatically translate to customer

success. A federated solution must be easy to integrate from

your customer standpoint. A well-defined integration will save

you and your customer valuable time and effort. Fortunately

with SAML, it’s possible to configure your application as

a relying party with just a few key pieces of information

from the identity provider. The best approach is to provide

a self- administration console for customers to enter this

information.

In most SAML integrations, the following information is typically

needed from the identity provider:

• An issuer ID: the entity ID of the identity provider used in the

assertion allowing your application to identify the issuer.

• An authentication certificate: issued by the identity Provider.

• User ID Type: determines which element is used by the SAML

assertion to identify the user. This can be the username in your

application or some other external ID.

4

White paper

Figure 2: Google Apps SAML Configuration with Okta

4. Partial rollout: A shift from local authentication to SAML

integration is considered a major change from an IT

perspective especially when most of your customers are

dealing with live production instances. To minimize risk and to

allow feedback from end-users, most IT administrators prefer

the option to perform a partial rollout with a selected group

of users before rolling out to the entire user base. You may

implement this based on existing groupings of users within

your product. At a minimum, you should allow individual users

to be selected. A back door login URL for emergency admin

access bypassing the SSO settings is also extremely useful to

avoid locking-out the entire instance during troubleshooting.

5. Partnering with Okta: For Okta customers using your

application, end-users can easily integrate your application

with Okta via SAML integration with Okta being the identity

provider.

Delegated Authentication

Another way to centralize authentication is through delegated

authentication. In a delegated authentication scenario, a user is

still being authenticated in your application. Instead of using local

credentials in your application, customers would like to leverage

user credentials residing in an existing identity provider. This is

slightly different from the federated use case. In federation, your

application grants access to a user based on an authenticated

account with the identity provider.

In delegated authentication, the user is authenticating to your

application and only your application. The validation of user

credentials is simply delegated or outsourced to an existing

identity provider.

In a typical implementation, the vendor would send a request to

the identity provider containing the user and relevant credentials

to be authenticated by the identity provider. The format of the

message should be determined by your application and made

available to identity providers in order to implement the appropriate

integration. Sample ASP scripts or WSDL (Web Service Definition

Language) are some of the ways to communicate this information.

Identity providers will then implement according to the templates

and identify a URL endpoint exposing the delegated authentication

functionality. This URL endpoint should be configurable through a

self-administration console and will be used for redirection when a

user logs in.

Here is an example of configuring delegated authentication for

Zendesk:

Figure 3: Zendesk Remote Authentication Configuration

Zendesk provides a remote authentication configuration page

allowing customers to easily populate identity provider related

information. A sample ASP template is provided to help implement

the desired feature in the identity provider. In addition, Zendesk

offers an IP range option to enable the remote authentication

feature for limited IPs only.

See “Appendix” for a sample WSDL for delegated authentication.

When integrating with Okta as the delegated authentication

provider, we provide step-by-step instructions, walking customers

through the entire setup.

5

White paper

Figure 4: Zendesk Remote Authentication Configuration

with Okta

Similar to setting up SAML, the vendor should provide the ability

to support partial rollout and provide back door access for

troubleshooting.

Support for both Federation and Delegated
Authentication

A customer may choose between a federated single sign-on

approach and a delegated authentication approach to integrate

your application. However, the two are not mutually exclusive

and there are cases where a combination of both is needed. Most

federated single sign-on solutions today are tailored for web-

based applications as they rely on the browser to act as the liaison

or the agent between your application and the identity provider.

This restriction limits these federated solutions when handling

authentication through mobile clients and other non-web-based

clients such as traditional thick clients. Delegated authentication

provides an alternative by allowing logins from these non-

browser-based clients to leverage the same credentials from a

single identity provider.

Directory Integration

For many customers, a corporate directory (LDAP) serves as the

authoritative source of identities and it is often used as the identity

store behind a SAML identity provider or a single sign-on solution.

Many on-premise applications support LDAP integration out-of-

the-box. For cloud vendors, many customers will request for such

integration, particularly those with Microsoft Active Directory.

Directory integration is useful in a couple of ways. It can be used

for delegated authentication. For example, customer may want

users to login to your application using their Microsoft Active

Directory credentials. For Okta customers, they can set up SAML

integration with Okta as the Identity Provider for your application,

or set up delegated authentication from your application to Okta.

Figure 5: Delegated Authentication from ISV to Okta

In both cases, Okta itself can be configured with the customer’s

Microsoft Active Directory for delegated authentication. So

whether your application is configured for SAML or for delegated

authentication, users will be logging in using their Active Directory

Credentials.

Figure 6: SAML between ISV and Okta

Directory integration also plays a crucial role in the identity life

cycle—from account provisioning, and de-provisioning , to access

provisioning. Application accounts may need to be created based

on directory users. User attributes in the directory may need

to be synchronized with your application user profile. Group

memberships in the directory may be used to define authorization

policies in your application. The next section will cover more about

user and access management. In general, to be a well-managed

cloud application, directory integration is a prerequisite.

Okta has implemented a robust integration with Microsoft Active

Directory to support both delegated authentication as well as user

and group management in an easy-to-manage and highly available

manner. For any Okta customers, your well-managed application

can rely on Active Directory for authentication, user provisioning,

user profile and

AD Domain
Controller

User

Seperate
Login for

Each
Application

Delegated
Authentication

Your NetworkInternet Firewall

http://yourcompany.okta.com

ISV

Okta Agent
(on Windows

Server)

AD Domain
Controller

User

User Redirected to
Login at Okta (IDP)

Delegated
Authentication

SAML

ISV

Your NetworkInternet Firewall

http://yourcompany.okta.com Okta Agent
(on Windows

Server)

6

White paper

User and Access Management—
the Identity Lifecycle

Whether you are familiar with the term “identity lifecycle” or not,

your application is dealing with it.

• How is a user account created in your application?

• How is a user profile updated?

• How to limit or grant user access in your application?

• How are users synchronized with the customer identity

source?

• How to help your customer align access policies across

different applications?

• How to deactivate an account?

Most vendors provide administrative consoles to perform these

tasks manually. For many customers, these operations are often

tied to the overall identity lifecycle of each user. For example:

• A HR system creates the initial footprint of an employee, which

should then trigger a new domain user to be created in Active

Directory.

• A VOIP telephone account should be created automatically for

all new employees.

• Everyone in the sales division should have an account in the

corporate CRM application with basic privileges assigned.

When an employee leaves the company, their access to the various

applications should be revoked.

An Identity lifecycle defines the different phases a user goes

through including onboarding, user profile changes, job changes

and exit. These changes are typically triggered through an HR

system or a directory such as Microsoft Active Directory. With Okta

and its user and group management capabilities, these changes

can be recognized and used to trigger appropriate actions in the

integrated applications. By exposing the necessary user and access

management APIs, your well-managed application can rely on an

external system like Okta to manage and monitor users and access

within your application. At a minimum, the APIs should support the

following:

1. Account Creation: Typically, this involves the creation of a

user profile and setting of various user attributes such as user

login name, first name, last name, email, phone numbers, etc.

An API to determine if an account already exists is a useful

accompaniment.

2. User Profile Management: An application user profile may

need to be updated during its lifetime. As an application,

you want to avoid stale user profile information as much

as possible. In some cases, such as an email change, the

application may not function properly without the update.

Your user management API should allow a client to set and

retrieve profile information from the application.

3. Deactivation/Reactivation: When a user should no longer

have access to the application, the account should be de-

activated or disabled. Such an event is typically triggered

by an external identity lifecycle event. The employee may

be changing his job role or leaving the company and no

longer require access to the application. From a compliance

standpoint, account deactivation is crucial to disallow access.

Your user management API should support deactivation—and

also reactivation since there are cases where reactivation is

necessary.

4. Authorization Management: Whether your application uses

group memberships or other types of authorization methods,

they must be associated with users to take effect. Exposing

APIs for group and authorization policy management allows

authorization to be driven and managed by an external

system. Your customer may want to assign all the sales

employees a particular set of application privileges—or have

the membership of a Microsoft Active Directory security

group synchronized with an application group within your

application.

Having your well-managed application integrated with Okta,

customers now have centralized user and access management

across all the well-managed applications integrated within Okta—

allowing them to efficiently provision accounts and access to users.

Equally important is the ability to de-provision access in a timely

fashion in case of an employee’s departure or a change of job

responsibilities.

With the entire audit trail of user activities and application access

maintained within Okta, your customer can easily report on

the current and historical view of this data to answer some key

questions.

• Who has an account in the CRM application?

• What permissions does a user have in that application?

• Who had access to the application six months ago?

• Who accessed the application and when?

Okta helps satisfy this key audit and compliance requirement for

your application, and for customers.

7

White paper

Beyond User and Access Management

Okta’s initial service is built on a secure, reliable and extensible

on-demand, multi-tenant cloud services platform. That platform

will be the foundation for a growing set of core Okta and partner

services that extend beyond the current identity and access

management functionality. Our initial Okta Scale is also focused

on measuring the ability of an application to meet the identity and

access management requirements of enterprise customers. Over

time, when we think of a well-managed application, we are thinking

beyond user management, authentication and authorization.

Below are a few examples of what we have seen supported across

various vendors. We would encourage you to consider these and

other new customer challenges as you think about maturing the

manageability of your services.

1. Centrally manage application licenses and subscription: From

a vendor standpoint, there may be a single contract license

and subscription per customer. For customers, however, they

are dealing with many cloud vendors. Having all the licensing

and subscription information in one place allows them to

reference the information while monitoring the application.

For example, allowing customers to quickly see the number of

seats used or remaining.

2. Monitoring and reporting of important application system

events: Certain application system events highlighting user

access and user activity may be useful for customers from a

monitoring and audit standpoint. Having APIs exposing the

event information allows customers to fetch this data for the

purpose of reporting, auditing, or analysis. Cloud vendors

such as Google Apps and Salesforce. com expose APIs for

audit purpose. Events related to System status or changes that

may impact a customer’s experience should also be made

available through APIs.

3. Obtaining updates and product news: Providing operational

updates of your application through feeds is another way to

provide additional insight to customers. In cases where the

information is not customer specific, such as site outage,

updates or product news, many vendors exposed these

through web feeds such as RSS and Twitter. For customers—

both end-users and administrators, these feeds open

up another communication channel they can optionally

subscribe to.

4. Reporting and analyzing of Application Usage: Depending on

the type of application, application usage may be important

for customers to evaluate the overall usage by users. For

example, a VoIP vendor can expose an API to allow usage

information of each user to be fetched.

5. Centrally managing notifications across applications for end-

users and administrators: Many applications send notifications

to users and administrators through email. Exposing these

notifications through API gives the ability for your customer

to manage these notifications in other ways. For example,

a notification may trigger an SMS sent out to the end-user

through a corporate-wide SMS system. A corporate user

portal can pick up notifications across different applications

and expose a consolidated task list to the end- user when he

arrives at his home page first thing in the morning.

Exposing this additional information allows Okta to provide this

information to our joint customers. Customers can now choose

how they want to use this information. But the greatest value is that

customers can now gain a much greater insight of its entire cloud

network through a pre-integrated, centralized framework delivered

through Okta. As the Okta scale evolves, these will almost certainly

become a part of the rating criteria along with other new and

evolving customer requirements.

Conclusion

Addressing these customer requirements and providing a well-

managed application for your customers will be crucial to your

success as a vendor and to the success of cloud computing in

general. It gives customers the ability to centralize authentication,

and user and access management of your application. From a

business standpoint, it allows you to externalize some of the most

important and yet complex identity management requirements.

This gives customers more flexibility in terms of integration options.

More importantly, it saves you the hassle to tackle these issues,

allowing you to focus on your core business.

At Okta, we believe in the value of a well-managed application.

We have created the Okta scale to identify the important

requirements for ISVs and to provide a benchmark for customers

to better evaluate their applications. When integrated with Okta,

our joint customers automatically benefit from our rich support in

application provisioning, single sign-on, access management, and

reporting—bringing the best out of your application and allowing

customers to centrally manage your application and other cloud

applications in Okta—a win-win situation.

8

White paper

Appendix

Case Study—Salesforce.com

Saleforce.com provides a comprehensive set of integration features

including many of the ones described in this whitepaper.

SAML and Delegated Authentication

For every Salesforce.com org, whether it is a production org, a

sandbox org or a developer edition org, both SAML and delegated

authentication are supported. A customer can easily access the

configuration in the setup area of the product available to users

with system administration privilege.

Figure 7: Salesforce.com SSO configuration

As shown in the above screenshot used for SAML configuration,

Salesforce.com has provided a user-friendly interface making it

extremely intuitive for customers to set up federated single sign-

on on their own. In addition, the Help page also provides clear

guidance and instructions about what parameters are needed and

how to obtain them from the identity provider.

For delegated authentication, the customer must contact customer

support to enable the feature. Once enabled, the configuration

becomes available on this page with a single identity provider URL

to be populated to specify the web service end point. A Delegated

Authentication WSDL is available for download for the identity

provider implementation.

Rolling out a single sign-on change is a daunting task for IT—

especially when dealing with a large population of end- users.

Salesforce.com allows you to selectively roll out these changes

based on user profiles. For example, you can test out your

delegated authentication setup with a small group of users sharing

a common user profile and enable delegated authentication for

that user profile only. This way, IT can test the solution with a small

group of end-users before implementing a wider rollout.

User & Group Management

On the user management front, Salesforce.com supports most

of the basic account management features including account

creation, deactivation, reactivation, password reset and user profile

updates. It also allows profiles and roles to be specified during

user creation and to be modified later on. In essence, most of

the operations allowed on the “Manage Users” page are available

through the API.

Integration with the API is extremely simple and secured. A

username with administrative privilege must be used in conjunction

with a security token generated by Salesforce.com when

authenticating through the API.

Lastly, all the APIs are well documented on Salesforce.com website.

For example, here is the documentation on the APIs around a User

object: Salesforce API Help

The integration steps have been implemented with the customer

in mind. The configuration steps are mostly self- service driven

without the need for customers to interact with the vendor at

all. Understanding that applications do not function in a silo-ed

fashion but in and amongst other applications and infrastructure

components, these features have enabled Salesforce.com to

integrate with their customers’ IT infrastructure—allowing secured

access, efficient management and simple integration with their

Salesforce.com instances, positioning Salesfore.com as a well-

managed cloud application.

9

White paper

Sample SAML Request

<?xml version=”1.0” encoding=”UTF-8”?>

<saml2p:AuthnRequest xmlns:saml2p=”urn:oasis:names:tc:SAML:2.0:protocol”

AssertionConsumerServiceURL=”http://www.sampleprovider.com/sso”

Destination=”http://mycompany.okta.com/app/sampleprovider/saml”

ForceAuthn=”false”

ID=”_d1c7bb2ed91fc1982f11660497ff2dc0”

IsPassive=”false” IssueInstant=”2010-07-04T13:37:25.155Z”

ProtocolBinding=”urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST” Version=”2.0”>

<saml2:Issuer xmlns:saml2=”urn:oasis:names:tc:SAML:2.0:assertion”>http://www.

sampleprovider.com/sso</saml2:Issuer>

<saml2p:NameIDPolicy AllowCreate=”false”

Format=”urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified”

SPNameQualifier=”http://www.sampleprovider.com/sso”/>

</saml2p:AuthnRequest>

Sample SAML Assertion

<samlp:Response

xmlns:samlp=”urn:oasis:names:tc:SAML:2.0:protocol” xmlns:saml=”urn:oasis:names:tc:SAML:2.0:assertion”

ID=”r657673434904598469567” InResponseTo=”r34943460856p567809567”

Version=”2.0”

IssueInstant=”2011-01-05T09:22:05Z”

Destination=”http://www.sampleprovider.com/sso/response”>

<saml:Issuer>https://www.okta.com/saml2</saml:Issuer>

<samlp:Status>

<samlp:StatusCode

Value=”urn:oasis:names:tc:SAML:2.0:status:Success”/>

</samlp:Status>

<saml:Assertion

xmlns:saml=”urn:oasis:names:tc:SAML:2.0:assertion”

ID=”r657673460856p567809567”

Version=”2.0”

IssueInstant=”2011-01-05T09:22:05Z”>

<saml:Issuer>https://www.okta.com/saml2</saml:Issuer>

<ds:Signature

xmlns:ds=”http://www.w3.org/2000/09/xmldsig#”>...</ds:Signature>

10

White paper

<saml:Subject>

<saml:NameID

Format=”urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress”>

test@okta.com

</saml:NameID>

<saml:SubjectConfirmation

Method=”urn:oasis:names:tc:SAML:2.0:cm:bearer”>

<saml:SubjectConfirmationData

InResponseTo=”r2187236345-04560-4596-0465”

Recipient=”http://www.sampleprovider.com/sso/response”

NotOnOrAfter=”2011-01-05T09:27:05Z”/>

</saml:SubjectConfirmation>

</saml:Subject>

<saml:Conditions

NotBefore=”2011-01-05T09:17:05Z”

NotOnOrAfter=”2011-01-05T09:27:05Z”>

<saml:AudienceRestriction>

<saml:Audience>http://www.sampleprovider.com/sso</saml:Audience>

</saml:AudienceRestriction>

</saml:Conditions>

<saml:AuthnStatement

AuthnInstant=”2011-01-05T09:22:00Z”

SessionIndex=”r439845895691245623469031”>

<saml:AuthnContext>

<saml:AuthnContextClassRef>

urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

</saml:AuthnContextClassRef>

</saml:AuthnContext>

</saml:AuthnStatement>

</saml:Assertion>

</samlp:Response>

11

White paper

Sample WSDL for Delegated Authentication Implementation

<!-- Sample Delegated Authentcation WSDL -->

<definitions targetNamespace=”urn:authentication.api.mysampleapp.com”>

<types>

<schema elementFormDefault=”qualified” targetNamespace=”urn:authentication.api. mysampleapp.com”>

<complexType name=”Authenticate”>

<sequence>

<element name=”username” type=”xsd:string”/>

<element name=”password” type=”xsd:string”/>

<element name=”sourceIp” type=”xsd:string”/>

<any namespace=”##targetNamespace” maxOccurs=”unbounded” minOccurs=”0”

processContents=”lax”/>

</sequence>

</complexType>

<complexType name=”AuthenticateResult”>

<sequence>

<element name=”Authenticated” type=”xsd:boolean”/>

</sequence>

</complexType>

<element name=”Authenticate” type=”tns:Authenticate”/>

<element name=”AuthenticateResult” type=”tns:AuthenticateResult”/>

</schema>

</types>

<message name=”AuthenticateRequest”>

<part element=”tns:Authenticate” name=”parameters”/>

</message>

<message name=”AuthenticateResponse”>

<part element=”tns:AuthenticateResult” name=”parameters”/>

</message>

<!-- Soap PortType -->

<portType name=”AuthenticationPortType”>

<operation name=”Authenticate”>

<input message=”tns:AuthenticateRequest”/>

<output message=”tns:AuthenticateResponse”/>

</operation>

12

White paper

</portType>

<!-- Soap Binding -->

<binding name=”AuthenticationBinding” type=”tns:AuthenticationPortType”>

<soap:binding style=”document” transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”Authenticate”>

<soap:operation soapAction=””/>

<input>

<soap:body parts=”parameters” use=”literal”/>

</input>

<output>

<soap:body use=”literal”/>

</output>

</operation>

</binding>

<!-- Soap Service Endpoint for MySampleApp to call the service -->

<service name=”MySampleAppAuthenticationService”>

<documentation>Authentication Service for MySampleApp</documentation>

<port binding=”tns:AuthenticationBinding” name=”AuthenticationService”>

<soap:address location=”http://localhost/”/>

</port>

</service>

</definitions>

13

White paper

API Functionality Description

Create User Ability to create a new user using basic set of user attributes - first name, last name, email, etc.

Update User Ability to subsequently update user profile. External changes on the user may require updates such as email update,

status update (e.g. disable a user).

Get All Users Ability to get a list of all the users (accounts) in your application. A client may wish to easily obtain a full list of accounts.

In some cases, an import of users and their user profile details is needed. You should consider both use cases. Get User

Status Depending on your application, they may be different types of status.

Set User Status Ability to update user status is crucial. Again, the basic active/disabled should be supported. If there are other

application specific statuses that should be exposed, make sure you include a way f or the client to fetch the list of

values since they vary from application to application.

Get Permissions Ability to set any permission related attributes or relationships for a user. Depending on your application, these could

be attributes within the user profile. There might be groups, roles or profiles (or a combination of these) that need to be

associated or granted to a user. The idea is to allow the API client to obtain a good picture of individual user access to

your application.

Update Password Ability to reset user passwords. This allows a client who may be centrally managing end-user passwords to synchronize

passwords into your application. If your application has a configurable password policy, the policy should also be

retrievable through some API—allowing your client to validate passwords accordingly if needed. Where possible,

allow hashed values as your client may not have access to the clear text value. Let your client know the type of hash

supported through documentation.

User Management APIs

14

White paper

General API recommendations

1. Use query-based API for searching where possible. Often

times, the parameters available to the client may not map to

the unique identifier(s) in your API. Allowing flexible search

criteria is key. Also, allow client to specify what to return. For

example, an API to fetch a user attribute (like first name, or

manager’s name) should not return all the attributes available

to the user and leave it up to the client to parse through the

information. It is both tedious and inefficient.

2. Proper error handling is important. The returned error should

provide sufficient details for the client to figure out what

the problem is. For example, include short but precise text

explanation as part of the error. If error codes are being used,

make sure the meaning of each code is clearly documented.

3. A key feature often missing is API level logging on the

application side. This is extremely useful when it comes to

debugging issues during integration development. Without

this, developer can only rely on returned errors if available or

changes in the application itself to see if the desired behavior

has been achieved. An API log showing clearly which API

is being used along with the parameters that are passing

through can help diagnose problems much quicker.

4. Think through each use case from the point of view of the

API client. In most cases, the operations supported by these

APIs are things that can be done in the product GUI involving

one or more end users. Sometimes an operation may require

multiple screens to capture the input. Certain sequential

operations may require time delays in between or pending on

another action to be executed. For example, workflows may

be required due to end user approvals. Think of how an API

client should cope with these complex scenarios. As part of

the design, you may need to explore the option of a different

workflow or business flow in the product to support your

clients where it makes sense.

5. Good Documentation is essential. This is the main channel

of communication between you and the client developer and

should include code documentation, code samples, setup

information, and error details.

Becoming an Okta ISV partner

Join hundreds of ISVs in the Okta Application Network. Let Okta

help you transform your application into a coordinated and

integrated part of our joint customers’ IT infrastructure. To learn

more, visit www.okta.com/ partners/isv-partners.html.About Okta

Okta is the foundation for secure connections between people

and technology. By harnessing the power of the cloud, Okta

allows people to access applications on any device at any time,

while still enforcing strong security policies. It integrates directly

with an organization’s existing directories and identity systems, as

well as 4,000+ applications. Because Okta runs on an integrated

platform, organizations can implement the service quickly at large

scale and low total cost. More than 2,500 customers, including

Adobe, Allergan, Chiquita, LinkedIn, MGM Resorts International and

Western Union, trust Okta to help their organizations work faster,

boost revenue and stay secure.

For more information, visit us at www.okta.com or follow us on

www.okta.com/blog.

About Okta

Okta is the foundation for secure connections between people

and technology. By harnessing the power of the cloud, Okta

allows people to access applications on any device at any time,

while still enforcing strong security policies. It integrates directly

with an organization’s existing directories and identity systems, as

well as 4,000+ applications. Because Okta runs on an integrated

platform, organizations can implement the service quickly at large

scale and low total cost. More than 2,500 customers, including

Adobe, Allergan, Chiquita, LinkedIn, MGM Resorts International and

Western Union, trust Okta to help their organizations work faster,

boost revenue and stay secure.

For more information, visit us at www.okta.com or follow us on

www.okta.com/blog.

