
Joël Franusic, Sr. Product Marketing Manager
Okta Platform for Developers

October 17th, 2018

© Okta and/or its affiliates. All rights reserved. Okta Confidential© Okta and/or its affiliates. All rights reserved. Okta Confidential

• OAuth and OpenID Connect (in plain English)
• Implementing OAuth and OpenID Connect

Agenda

2

OAuth and OpenID Connect
(in plain English)

A lot of confusion around
OAuth.
× Terminology and jargon
× Incorrect advice

Identity use cases (circa 2007)

• Simple login – forms and cookies
• Single sign-on across sites – SAML
• Mobile app login – ???
• Delegated authorization – ???

The delegated authorization problem

OR: How can I let a website access my
data (without giving it my password)?

Don't do it this way!

Don't do it this way!

Delegated authorization with OAuth 2.0

I trust Gmail and I kind of
trust Yelp. I want Yelp to

have access to my
contacts only.

yelp.com

Connect with
Google

Delegated authorization with OAuth 2.0
yelp.com

Connect with
Google

accounts.google.com

Email

Password

accounts.google.com

Allow Yelp to access your
public profile and contacts?

YesNo

yelp.com/callback

Loading…

contacts.google.com

OAuth 2.0 terminology

• Resource owner
• Client
• Authorization server
• Resource server
• Authorization grant
• Access token

OAuth 2.0 authorization code flow
yelp.com

Connect with
Google

accounts.google.com

Email

Password

accounts.google.com

Allow Yelp to access your
public profile and contacts?

YesNo

yelp.com/callback

Loading…

contacts.google.co
m

Authorization server

Talk to resource server
with access token

Resource owner

Client

Back to redirect URI
with authorization code

Redirect URI: yelp.com/callback
Response type: code

Exchange authorization code

for access token

Go to authorization server

More OAuth 2.0 terminology

• Scope
• Consent

OAuth 2.0 authorization code flow
yelp.com

Connect with
Google

accounts.google.com

Email

Password

accounts.google.com

Allow Yelp to access your
public profile and contacts?

YesNo

yelp.com/callback

Loading…

contacts.google.com

Authorization server

Talk to resource server
with access token

Resource owner

Client

Back to redirect URI
with authorization code

Redirect URI: yelp.com/callback
Response type: code
Scope: profile contacts

Exchange authorization code

for access token

Request consent
from resource owner

Go to authorization server

Even more OAuth 2.0 terminology

Back channel (highly secure channel)
Front channel (less secure channel)

OAuth 2.0 authorization code flow
yelp.com

Connect with
Google

accounts.google.com

Email

Password

accounts.google.com

Allow Yelp to access your
public profile and contacts?

YesNo

yelp.com/callback

Loading…

contacts.google.com

Authorization server

Talk to resource server
with access token
(back channel)

Resource owner

Client

Back to redirect URI
with authorization code
(front channel)

Exchange authorization code

for access token (back channel)

Request consent
from resource owner

Redirect URI: yelp.com/callback
Response type: code
Scope: profile contacts

Go to authorization server
(front channel)

Starting the flow

https://accounts.google.com/o/oauth2/v2/auth?
client_id=abc123&
redirect_uri=https://yelp.com/callback&
scope=profile&
response_type=code&
state=foobar

Calling back

https://yelp.com/callback?
error=access_denied&
error_description=The user did not consent.

https://yelp.com/callback?
code=oMsCeLvIaQm6bTrgtp7&
state=foobar

Exchange code for an access token

POST www.googleapis.com/oauth2/v4/token
Content-Type: application/x-www-form-urlencoded

code=oMsCeLvIaQm6bTrgtp7&
client_id=abc123&
client_secret=secret123&
grant_type=authorization_code

Authorization server returns an access token

{
"access_token": "fFAGRNJru1FTz70BzhT3Zg",
"expires_in": 3920,
"token_type": "Bearer",

}

Use the access token

GET api.google.com/some/endpoint
Authorization: Bearer fFAGRNJru1FTz70BzhT3Zg

Client API

Token

• Validate token
• Use token scope for

authorization

OAuth 2.0 flows

• Authorization code (front channel + back channel)
• Implicit (front channel only)

• Resource owner password credentials (back channel only)
• Client credentials (back channel only)

OAuth 2.0 implicit flow
Yelp Angular app

Connect with
Google

accounts.google.com

Email

Password

accounts.google.com

Allow Yelp to access your
public profile and contacts?

YesNo

Yelp Angular app

Hello!

contacts.google.com

Authorization server

Talk to resource server
with access token
(front channel)

Resource owner

Client

Back to redirect URI
with token

Request consent
from resource owner

Redirect URI: yelp.com/callback
Response type: token
Scope: profile contacts

Go to authorization server

Identity use cases (circa 2012)

Simple login OAuth 2.0 Authentication

Single sign-on across sites OAuth 2.0 Authentication

Mobile app login OAuth 2.0 Authentication

Delegated authorization OAuth 2.0 Authorization

Problems with OAuth 2.0 for authentication

• No standard way to get the user's information
• Every implementation is a little different
• No common set of scopes

OAuth 2.0 and OpenID Connect

OpenID Connect is for
authentication

HTTP

OAuth 2.0

OpenID Connect

OAuth 2.0 is for
authorization

What OpenID Connect adds

• ID token
• UserInfo endpoint for getting more user information
• Standard set of scopes
• Standardized implementation

OpenID Connect authorization code flow
yelp.com

Log in with Google

accounts.google.com

Email

Password

accounts.google.com

Allow Yelp to access your
public profile?

YesNo

yelp.com/callback

accounts.google.com

/userinfo

Authorization server

Get user info
with access token

Resource owner

Client

Back to redirect URI
with authorization code

Exchange authorization code for

access token and ID token

Request consent
from resource owner

Hello Nate!

Redirect URI: yelp.com/callback
Response type: code
Scope: openid profile

Go to authorization server

Starting the flow

https://accounts.google.com/o/oauth2/v2/auth?
client_id=abc123&
redirect_uri=https://yelp.com/callback&
scope=openid profile&
response_type=code&
state=foobar

Exchange code for access token and ID token

POST www.googleapis.com/oauth2/v4/token
Content-Type: application/x-www-form-urlencoded

code=oMsCeLvIaQm6bTrgtp7&
client_id=abc123&
client_secret=secret123&
grant_type=authorization_code

Authorization server returns access and ID tokens

{
"access_token": "fFAGRNJru1FTz70BzhT3Zg",
"id_token": "eyJraB03ds3F..."
"expires_in": 3920,
"token_type": "Bearer",

}

ID token (JWT)

eyJhbGciOiJSUzI1NiIsImtpZCI6IkRNa3Itd0JqRU1EYnhOY25xaVJISVhuY
UxubWI3UUpfWF9rWmJyaEtBMGMifQ
.
eyJzdWIiOiIwMHU5bzFuaWtqdk9CZzVabzBoNyIsInZlciI6MSwiaXNzIjoia
HR0cHM6Ly9kZXYtMzQxNjA3Lm9rdGFwcmV2aWV3LmNvbS9vYXV0aDIvYXVzOW
84d3ZraG9ja3c5VEwwaDciLCJhdWQiOiJsWFNlbkx4eFBpOGtRVmpKRTVzNCI
sImlhdCI6MTUwOTA0OTg5OCwiZXhwIjoxNTA5MDUzNDk4LCJqdGkiOiJJRC5o
a2RXSXNBSXZTbnBGYVFHTVRYUGNVSmhhMkgwS2c5Ykl3ZEVvVm1ZZHN3IiwiY
W1yIjpbImtiYSIsIm1mYSIsInB3ZCJdLCJpZHAiOiIwMG85bzFuaWpraWpLeG
NpbjBoNyIsIm5vbmNlIjoidWpwMmFzeHlqN2UiLCJhdXRoX3RpbWUiOjE1MDk
wNDk3MTl9
.
dv4Ek8B4BDee1PcQT_4zm7kxDEY1sRIGbLoNtlodZcSzHz-
XU5GkKyl6sAVmdXOIPUlAIrJAhNfQWQ-
_XZLBVPjETiZE8CgNg5uqNmeXMUnYnQmvN5oWlXUZ8Gcub-GAbJ8-
NQuyBmyec1j3gmGzX3wemke8NkuI6SX2L4Wj1PyvkknBtbjfiF9ud1-
ERKbobaFbnjDFOFTzvL6g34SpMmZWy6uc_Hs--n4IC-ex-_Ps3FcMwRggCW_-
7o2FpH6rJTOGPZYrOx44n3ZwAu2dGm6axtPI-
sqU8b6sw7DaHpogD_hxsXgMIOzOBMbYsQEiczoGn71ZFz_1O7FiW4dH6g

Header

Payload
(claims)

Signature

The ID token (JWT)

(Header)
.
{

"iss": "https://accounts.google.com",
"sub": "nate.barbettini@example.com",
"name": "Nate Barbettini"
"aud": "s6BhdRkqt3",
"exp": 1311281970,
"iat": 1311280970,
"auth_time": 1311280969,

}
.
(Signature)

Calling the userinfo endpoint

GET www.googleapis.com/oauth2/v4/userinfo
Authorization: Bearer fFAGRNJru1FTz70BzhT3Zg

200 OK
Content-Type: application/json

{
"sub": "nate.barbettini@example.com",
"name": "Nate Barbettini"
"profile_picture": "http://plus.g.co/123"

}

Identity use cases (today)

Simple login OpenID Connect Authentication

Single sign-on across sites OpenID Connect Authentication

Mobile app login OpenID Connect Authentication

Delegated authorization OAuth 2.0 Authorization

OAuth and OpenID Connect

Use OAuth 2.0 for:
• Granting access to your API
• Getting access to user data in

other systems
(Authorization)

Use OpenID Connect for:
• Logging the user in
• Making your accounts

available in other systems
(Authentication)

Which flow (grant type) do I use?

Web application with a server backend: authorization code flow

Native mobile app: authorization code flow with PKCE

JavaScript app (SPA) with an API backend: implicit flow

Microservices and APIs: client credentials flow

Example: web application with server backend

Authorization server
handles login and security,
establishes session for user

Set-Cookie: sessionid=f00b4r; Max-Age: 86400;

example.com

Log in

login.example.com

Email

Password
Back to web app with code
grant, exchanged for ID
token

OpenID Connect (code flow)

Example: native mobile app

Authorization server
handles login and security

Example App

Log in

login.example.com

Email

Password
Back to app with code grant, exchanged for
ID token and access token

OpenID Connect (code flow + PKCE)

• Store tokens in protected device storage
• Use ID token to know who the user is
• Attach access token to outgoing API requests

AppAuth

Example: SPA with API backend

Authorization server
handles login and
security, establishes
session for user

app.example.com

Log in

login.example.com

Email

Password
Back to web app with ID token
and access token

OpenID Connect (implicit flow)

• Store tokens locally with JavaScript
• Use ID token to know who the user is
• Attach access token to outgoing API requests

Example: SSO with 3rd-party services

example.com

Log in

saml.othersite.com

Email

Password

Okta
OpenID Connect

SAML

Token validation

• The fast way: local validation
• Check expiration timestamp
• Validate cryptographic signature
• Validate claims
• etc

• The strong way: introspection

Revocation

12PM 1PM 2PM

Token issued and used for
API calls

Device compromised!

What happens?

POST /oauth2/default/v1/revoke
Content-Type: application/x-www-form-urlencoded

token=fFAGRNJru1FTz70BzhT3Zg
&token_type_hint=access_token
&client_id=...

Keeping the user signed in

For both local validation and introspection, the token is invalid once it
expires, so:
• If there's a user at the keyboard, just redirect through the

authorization server again.
• If there's no user (automated tasks), request a refresh token

(offline scope).

Implementing OAuth and
OpenID Connect

© Okta and/or its affiliates. All rights reserved. Okta Confidential© Okta and/or its affiliates. All rights reserved. Okta Confidential

© Okta and/or its affiliates. All rights reserved. Okta Confidential© Okta and/or its affiliates. All rights reserved. Okta Confidential

© Okta and/or its affiliates. All rights reserved. Okta Confidential© Okta and/or its affiliates. All rights reserved. Okta Confidential

© Okta and/or its affiliates. All rights reserved. Okta Confidential© Okta and/or its affiliates. All rights reserved. Okta Confidential

© Okta and/or its affiliates. All rights reserved. Okta Confidential© Okta and/or its affiliates. All rights reserved. Okta Confidential

© Okta and/or its affiliates. All rights reserved. Okta Confidential© Okta and/or its affiliates. All rights reserved. Okta Confidential

© Okta and/or its affiliates. All rights reserved. Okta Confidential© Okta and/or its affiliates. All rights reserved. Okta Confidential

Additional Resources

54

• https://oauth.com
• https://oauth.com/playground
• YouTube: “OAuth in plain English”
• Google: “Using OAuth and OpenID Connect in your applications”
• https://developer.okta.com/documentation/

Thank you!

