
Okta Inc.
100 First Street

San Francisco, CA 94105

info@okta.com
1-888-722-7871

8 Ways to Secure Your
Microservices Architecture

8 Ways to Secure Your Microservices Architecture

2

Make your microservices architecture secure by design

Scan for dependencies

Use HTTPS everywhere

Use access and identity tokens

Encrypt and protect secrets

Slow down attackers

Know your cloud and cluster security

Cover your security bases

Embarking on a path towards secure microservices

3

4

4

5

7

7

7

8

9

Table of Contents

3

8 Ways to Secure Your Microservices Architecture

You’ve heard the saying “less is more”, but for developers

and software architects, the opposite can be true—

especially as customer and business demands mean

they have to be more agile. The ongoing transition from

monolithic architectures to microservices is a perfect

example.

Compared to monolithic applications, which house all code

in a single system, microservices are small, autonomous

units that address individual functions and work with others

to help an application function. This makes them a good

choice for developers who need to deliver large, complex

applications rapidly, frequently, and reliably. Operating with

these distributed components brings several benefits, but

also its own unique set of security requirements. Instead

of a single entry point, microservices offer dozens or even

hundreds of potential points of vulnerability—and as such

each one needs to be effectively secured in order for an

application to operate effectively.

4 benefits of microservices

While this may seem like a daunting task, securing your

microservices comes down to implementing a series of

best practices that make security an integral component to

how your developer teams work—without compromising

productivity.

Here are eight steps your teams can take to protect the

integrity of your microservices architecture.

Make your microservices
architecture secure by design

Much like construction workers need to strategically

layer rebar and concrete to build strong foundations for

skyscrapers, developers must embed layers of security

in applications to protect the data they hold. Within

microservices architecture, this means being “secure by

design”—keeping security top of mind at every stage of

production, from design to build to deployment.

When it comes to writing your code, this means

implementing a form of continuous stress testing on your

architecture. In part, this means testing your continuous

integration (CI) and continuous delivery (CD) pipelines.

This can be done by simultaneously implementing security

unit tests such as static analysis security testing (SAST) and

dynamic analysis security testing (DAST):

• SAST will detect vulnerabilities in your code, as well as

the libraries you import. It works from the inside and

therefore requires a scanner that’s compatible with

your programming language.

• DAST works from the outside, mimicking malicious

attacks, to identify vulnerabilities. Unlike SAST,

it doesn’t depend on a specific language.

1

Improves productivity and speed, as

multiple teams can work simultaneously on

different elements of a distributed system

Allows developer teams to selectively deploy

specific components of their architecture—

without causing major disruptions

The infrastructure is easy to use with

containers (e.g., Docker)

There’s room to choose the best tool

for the problem

https://www.atlassian.com/continuous-delivery/principles/devsecops
https://www.atlassian.com/continuous-delivery/principles/devsecops

4

8 Ways to Secure Your Microservices Architecture

These unit tests can be built into your delivery pipeline

to help minimize the manual security checks that might

burden your developers. The Open Web Application

Security Project (OWASP) also offers a series of resources

and analysis tools to help your team implement best

practices as they build out software.

Scan for dependencies

Many libraries used to develop software depend in turn on

other libraries, which means much of the code deployed

to production consists of third-party dependencies.

This makes security an even bigger concern, as these

relationships could create large chains of dependencies,

which might pose vulnerabilities for your systems.

These points of failure can be eliminated by regularly and

thoroughly scanning an application’s source code repository,

new code contributions, and deployment pipeline for

vulnerable dependencies (including updated release versions).

While the majority of applications supply release notes, only

75% report security issues—and just 10% report common

vulnerabilities and exposures. Knowing your dependencies

helps ensure there are no vulnerabilities due to new pull

requests and that your code is up to date at the time of

deployment. In addition to enabling security alerts in

your repository, tools like Github’s Dependabot can help

automate updates via pull requests.

Use HTTPS everywhere

This may feel like a basic principle, but it’s important to

implement consistently as a foundational element to your

internal and external operations.

While common attacks like phishing and credential stuffing

are top of mind for most IT professionals when it comes to

implementing security infrastructure, mitigating attacks that

could originate within your network is also important. This

can be done in part by implementing HTTPS across your

microservices architecture.

Officially known as Transport Layer Security (TLS),

HTTPS ensures privacy and data integrity by encrypting

communication over HTTP. Think of it this way: much like

driving requires a license that proves you are who you say

you are and grants permission to operate vehicles, HTTPS

requires a certificate to authenticate your identity and

provide access to encrypted communications via Public

Key Infrastructure. Once you’ve acquired your certificates,

you can continue enhancing your security posture

by automating certificate generation and renewals—

keeping bad actors that might want to compromise your

architecture at bay.

Every aspect of your microservices architecture, from

Maven repositories to XSDs, can refer to these secure

URLs. You can also use the HTTP Strict-Transport-Security

response header to instruct browsers to only access your

endpoints using HTTPS.

As you build your microservices and APIs, HTTPS will be

vital for securing the data that’s transmitted within your

systems. And once they’re deployed, it will serve to offer

secure connections for external users, protecting your

data—and your reputation.

3

2

https://owasp.org/www-community/Source_Code_Analysis_Tools
https://snyk.io/wp-content/uploads/The-State-of-Open-Source-2017.pdf
https://dependabot.com/
https://www.okta.com/security-blog/2020/01/what-is-phishing/
https://www.okta.com/security-blog/2019/04/what-is-credential-stuffing/

5

8 Ways to Secure Your Microservices Architecture

OIDC and OAuth 2.0 also enable you to look up a user’s

identity by sending an access token to a user information

endpoint. The path for this endpoint can be determined by

using OIDC discovery. As a result, OAuth 2.0 reduces the

burden on your developers as they don’t have to build their

own authentication mechanisms into each microservice.

POST /token

GET /resource
Authorization: Bearer XXX

client_id
+

client_secret

API Client

Access token
response

JSON response

API SERVICE

AUTHORIZATION SERVER

4

Pros of a many-to-
one relationship:

• Services use access tokens

to securely talk to other

internal services

• Puts scope and permission

definitions in one place

• Improves management for

developers and security

people

• Increases speed (because

it’s less chatty)

Cons of a many-to-
one relationship:

• Opens applications up

to rogue services, which

can cause problems with

tokens

• Puts all services at risk if

one token is compromised

• Creates vague service

boundaries because they’re

all communicating with a

single identity engine

Authorization servers: many-to-one or one-to-one?

Using the OAuth 2.0 standard, authorization servers

play a key role as they are responsible for authenticating

resource owners, issuing access tokens, and enabling user

authorizations. Typically, authorization servers are set up in

a many-to-one relationship where many microservices talk

to a single authorization server. However, there are both

benefits and challenges to this approach.

OAuth 2.0 + OIDC can:

• Discover OpenID provider metadata

• Perform OAuth flows to obtain an ID token and/

or access token

• Obtain JSON Web Key Sets (JWKS) for signature keys

• Validate identity tokens (e.g. JSON web tokens)

• Receive additional user attributes with access tokens

from userinfo endpoints

Use access and identity tokens

A microservices architecture can encompass everything

from the backend services that provide data, to the

middleware code that talks to the data stores, to the UI that

serves up the data in a user-friendly way. And putting the

right tools and protocols in place is crucial for delivering

secure and effective authentication and authorization

across those microservices.

OAuth 2.0, for example, offers an industry-standard

protocol for authorizing users across distributed systems.

Within the context of microservices, OAuth 2.0’s client

credential flow allows for secure server-to-server

communication between an API client and an API server.

In 2014, OpenID Connect (OIDC) extended OAuth, adding

federated identity to delegated authorization. Together,

these two layers offer a standard specification that

developers can write code against in a way that will

work across multiple identity providers.

6

8 Ways to Secure Your Microservices Architecture

Another—more secure—option is to adopt an architecture

where each microservice is bound to its own authorization

server, ensuring that communications only occur within

trusted relationships.

Customer story

Pitney Bowes, a global technology company, has nearly

a decade of experience developing APIs to help provide

e-commerce solutions. Powering billions of transactions

for millions of clients around the world—including 90%

of the Fortune 500—it wasn’t long before the company

realized that it’s on-premises infrastructure was both

costly and time consuming to maintain.

“Our infrastructure was a big, iron ship—agility and

speed weren’t its strong point,” says Kenn Bryant,

Director of Architecture and SaaS Services at Pitney

Bowes. And even though the company was using OAuth

for web service authorization prior to implementing

Okta, it faced challenges with integrations.

As part of its digital transformation efforts, Pitney

Bowes decided to migrate to the cloud and integrate

its API gateway into its overall identity and access

management (IAM) strategy, purchasing Okta’s

API Access Management solution to facilitate the

integration with its API partner.

This solution not only contributes to a reliable, scalable

cloud infrastructure, but also offers integrations with

more than 6,000 vendors and protects against data

breaches for 100% of the company’s APIs.

With Okta at the helm, Pitney Bowes’ small development

team can focus its efforts on user experience, rather

than writing code and securing enterprise data. “Before

Okta, it would take us a few days to integrate and

expose APIs. Now it only takes a few hours,” says Henry

Rogando, Principal Software Architect. The company

can easily administer APIs and manage user access from

a centralized location to deliver a secure, unified set of

shared services for developers.

Pros of a one-to-
one relationship:

• More clearly defined

security boundaries

Cons of a one-to-
one relationship:

• Slower

• Harder to manage

As they offer a more complex avenue towards secure

communications, one-to-one relationships need effective

planning and documentation before they can be adopted

across your microservices architecture.

Okta’s role as an identity provider

When it comes to providing secure access to your APIs and

microservices, Okta plays the role of the authorization server,

authenticating the user and issuing an ID or access token.

Your gateway and downstream app can validate the token.

Meanwhile, our API Access Management product offers

custom authorization servers, which allow you to adjust for

audience parameters, custom scopes, and access policies.

Implementing API Access Management helps developer teams

save up to two weeks of time every year, reduces time spent

writing code for authorization policies for each app or API

pair by two days, lowers the chance of a breach via exposed

APIs, and standardizes the tools, libraries, and training because

everything speaks OAuth tokens.

By managing user and resource access to your APIs with

fine-grained controls, Okta can support your API gateway

in making allow/deny decisions. Operating with API gateway

partners, Okta’s solutions help you rapidly build, deploy, and

secure new services; lower your cost of ownership; and easily

provision and deprovision users across all your APIs.

https://www.okta.com/products/api-access-management/
https://developer.okta.com/docs/guides/customize-authz-server/overview/
https://www.okta.com/products/api-access-management/
https://www.okta.com/api-gateway/

7

8 Ways to Secure Your Microservices Architecture

Encrypt and protect secrets

When you develop microservices that talk to authorization

servers and other services, the microservices likely

have secrets that they use for communication—these

might be API keys, client secrets, or credentials for basic

authentication.

These secrets should not be checked into your source

control management system. Even if you develop code in

a private repository, it’s likely to cause trouble while your

team is working on production code. Rather, the first step in

securing the secrets in your microservices is to store them

in environment variables. Better yet, developers should

encrypt secrets using tools like HashiCorp Vault, Microsoft

Azure Key Vault, or Amazon KMS. With Amazon KMS, for

example, you can generate a master key, encrypt your data

with unique data keys that are then encrypted by the master

key, creating an encrypted message that’s stored as a file

or in a database. This approach ensures the keys needed to

decrypt any data are always unique and safe, which means

your team can spend less time implementing and managing

other safeguards.

Slow down attackers

If someone tries to attack your API with hundreds of

username and password combinations, it will likely take a

while for them to authenticate successfully. Slowing down

this process even more is another way to protect your

various endpoints. Using an approach like rate limiting,

for instance, means that attackers can only make one or

two attempts per second, which may deter them from

continuing credential stuffing attacks on your systems.

Rate limiting can be implemented in your code—with an

open-source library—or within an API gateway. Okta’s API

rate limits and email rate limits, for example, are particularly

helpful in preventing denial-of-service attacks.

Know your cloud
and cluster security

If your team is managing its own production clusters

and clouds, they should be aware of the four Cs of cloud

native security: code, container, cluster, and cloud/co-lo/

corporate datacenter.

Each one of the four Cs depends on the security of the

squares in which they fit. It is nearly impossible to safeguard

microservices if you are only addressing security at one

level. However, adding the appropriate security to the code,

container, cluster, and cloud augments an already strong base.

5

6

7

Code

Container

Cluster

Cloud/Co-Lo/Corporate Datacenter

https://www.hashicorp.com/products/vault/
https://azure.microsoft.com/en-us/services/key-vault/
https://azure.microsoft.com/en-us/services/key-vault/
https://aws.amazon.com/kms/
https://kubernetes.io/docs/concepts/security/#the-4c-s-of-cloud-native-security
https://kubernetes.io/docs/concepts/security/#the-4c-s-of-cloud-native-security

8

8 Ways to Secure Your Microservices Architecture

We’ve talked about how you can best design secure code

and how to operate within a secure cloud environment.

When it comes to container security, meanwhile, ensuring

the integrity of your containers and their base images is

crucial. You can do this by:

• Using signed images with Docker Content Trust

• Building an internal registry

• Using secure container versioning

• Scanning container images for vulnerabilities and bugs

• Keeping configurations secret

• Preventing container breakouts by operating on least-

privilege principles

• Implementing authentication features (this is true across

all four Cs)

• Keeping up-to-date with container security best-

practices—remember, what’s secure today might not be

secure tomorrow

If you’re looking to secure your clusters and increase their

resiliency in the face of an attack, these are the actions you

should consider:

• Implement Okta Advanced Server Access to govern

access to server accounts and apply authorization

policies across any cloud

• Employ TLS everywhere (as we discussed above)

• Enable role-based access control with least privilege

• Disable attribute-based access control and use audit

logging

• Use a third-party authentication provider like Google,

GitHub, or Okta

• Rotate your encryption keys to mitigate vulnerabilities

• Use network policies to limit traffic between pods

• Run a service mesh

Cover your security bases

In addition to the strategies already discussed, there

are three tactical ways your team can enhance your

microservices security:

Use rootless mode: Docker 19.03+ has a rootless

mode that was designed to reduce the security

footprint of the Docker daemon and expose Docker

capabilities to systems where users cannot gain root

privileges. If you are running Docker daemons in

production, this feature adds an extra layer of security.

Implement time-based security: The idea behind

time-based security is that your system is never

fully secure. As such, you don’t only have to

prevent intruders from accessing your application

infrastructure, but also be able to detect anomalies

and react quickly. Products like Okta’s Advanced

Server Access (ASA) slow down intruders by

authenticating server login requests via Single Sign-

On and multi-factor authentication and authorizing

based on customizable access policies. ASA

additionally generates rich request events that are

consumable via API, or can be directly streamed to

a SIEM like Splunk to help your team quickly detect

security threats.

Scan Docker and Kubernetes configuration for

vulnerabilities: Docker containers are often used

in microservice architectures—so they need to be

secured properly. This means following the steps

we’ve outlined above for protecting images and

containers alike.

1

2

3

8

https://developer.okta.com/blog/2019/07/18/container-security-a-developer-guide
https://www.okta.com/products/advanced-server-access/
https://www.okta.com/identity-101/what-is-role-based-access-control-rbac/
https://www.okta.com/identity-101/what-is-least-privilege-access/
https://www.okta.com/identity-101/role-based-access-control-vs-attribute-based-access-control/

9

8 Ways to Secure Your Microservices Architecture

About Okta

Learn more at: www.okta.com

Okta is the leading independent provider of identity for

developers and the enterprise. The Okta Identity Cloud

securely connects enterprises to their customers, partners,

and employees. With deep integrations to over 6,000

applications, the Okta Identity Cloud enables simple and

secure access for any user from any device.

Thousands of customers, including 20th Century Fox,

Adobe, Dish Networks, Experian, Flex, LinkedIn, and News

Corp, trust Okta to help them work faster, boost revenue

and stay secure. Okta helps customers fulfill their missions

faster by making it safe and easy to use the technologies

they need to do their most significant work.

Embarking on a path towards
secure microservices

The move to microservice architecture is redefining how

developer and DevOps teams operate. Stepping in for what

has commonly been a monolithic approach to building

systems and applications, microservices allow teams to be

more agile, cost-effective, and better enabled to scale their

systems. And as this approach to architecture becomes

more prevalent within your organization, it’s crucial that

you enable your team with the right tools and resources to

secure these disparate features.

At Okta, we’ve developed a suite of identity and access

management products that can be easily integrated into

your applications, minimizing the need for your team to

develop internal security solutions and allowing them to

focus on building highly-scalable applications for your

business.

To learn more about how Okta can support you

with your microservice security, get in touch.

https://www.okta.com/
https://www.okta.com/contact/

